MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Visualization version   Unicode version

Theorem fbasfip 21672
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )

Proof of Theorem fbasfip
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . . 6  |-  ( y  e.  ( ~P F  i^i  Fin )  <->  ( y  e.  ~P F  /\  y  e.  Fin ) )
2 elpwi 4168 . . . . . . 7  |-  ( y  e.  ~P F  -> 
y  C_  F )
32anim1i 592 . . . . . 6  |-  ( ( y  e.  ~P F  /\  y  e.  Fin )  ->  ( y  C_  F  /\  y  e.  Fin ) )
41, 3sylbi 207 . . . . 5  |-  ( y  e.  ( ~P F  i^i  Fin )  ->  (
y  C_  F  /\  y  e.  Fin )
)
5 fbssint 21642 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  y  C_  F  /\  y  e. 
Fin )  ->  E. z  e.  F  z  C_  |^| y )
653expb 1266 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  (
y  C_  F  /\  y  e.  Fin )
)  ->  E. z  e.  F  z  C_  |^| y )
74, 6sylan2 491 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  E. z  e.  F  z  C_  |^| y )
8 0nelfb 21635 . . . . . . . . 9  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  F
)
98ad2antrr 762 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  (/) 
e.  F )
10 eleq1 2689 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( z  e.  F  <->  (/)  e.  F
) )
1110biimpcd 239 . . . . . . . . 9  |-  ( z  e.  F  ->  (
z  =  (/)  ->  (/)  e.  F
) )
1211adantl 482 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  (
z  =  (/)  ->  (/)  e.  F
) )
139, 12mtod 189 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  =  (/) )
14 ss0 3974 . . . . . . 7  |-  ( z 
C_  (/)  ->  z  =  (/) )
1513, 14nsyl 135 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  C_  (/) )
1615adantrr 753 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  z  C_  (/) )
17 sseq2 3627 . . . . . . 7  |-  ( (/)  =  |^| y  ->  (
z  C_  (/)  <->  z  C_  |^| y ) )
1817biimprcd 240 . . . . . 6  |-  ( z 
C_  |^| y  ->  ( (/)  =  |^| y  -> 
z  C_  (/) ) )
1918ad2antll 765 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  ( (/)  =  |^| y  ->  z  C_  (/) ) )
2016, 19mtod 189 . . . 4  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  (/)  =  |^| y )
217, 20rexlimddv 3035 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  -.  (/)  =  |^| y )
2221nrexdv 3001 . 2  |-  ( F  e.  ( fBas `  X
)  ->  -.  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y )
23 0ex 4790 . . 3  |-  (/)  e.  _V
24 elfi 8319 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ( fBas `  X
) )  ->  ( (/) 
e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2523, 24mpan 706 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( (/)  e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2622, 25mtbird 315 1  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ` cfv 5888   Fincfn 7955   ficfi 8316   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743
This theorem is referenced by:  fbunfip  21673
  Copyright terms: Public domain W3C validator