MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4 Structured version   Visualization version   Unicode version

Theorem minveclem4 23203
Description: Lemma for minvec 23207. The convergent point of the Cauchy sequence  F attains the minimum distance, and so is closer to  A than any other point in  Y. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
minvec.x  |-  X  =  ( Base `  U
)
minvec.m  |-  .-  =  ( -g `  U )
minvec.n  |-  N  =  ( norm `  U
)
minvec.u  |-  ( ph  ->  U  e.  CPreHil )
minvec.y  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
minvec.w  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
minvec.a  |-  ( ph  ->  A  e.  X )
minvec.j  |-  J  =  ( TopOpen `  U )
minvec.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
minvec.s  |-  S  = inf ( R ,  RR ,  <  )
minvec.d  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
minvec.f  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
minvec.p  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
minvec.t  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
Assertion
Ref Expression
minveclem4  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Distinct variable groups:    x, y,  .-    x, r, y, A    J, r, x, y    x, P, y    x, F, y   
x, N, y    ph, r, x, y    x, R, y   
x, U, y    X, r, x, y    Y, r, x, y    D, r, x, y    S, r, x, y    T, r, y
Allowed substitution hints:    P( r)    R( r)    T( x)    U( r)    F( r)    .- ( r)    N( r)

Proof of Theorem minveclem4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . 3  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  Y
2 minvec.x . . . 4  |-  X  =  ( Base `  U
)
3 minvec.m . . . 4  |-  .-  =  ( -g `  U )
4 minvec.n . . . 4  |-  N  =  ( norm `  U
)
5 minvec.u . . . 4  |-  ( ph  ->  U  e.  CPreHil )
6 minvec.y . . . 4  |-  ( ph  ->  Y  e.  ( LSubSp `  U ) )
7 minvec.w . . . 4  |-  ( ph  ->  ( Us  Y )  e. CMetSp )
8 minvec.a . . . 4  |-  ( ph  ->  A  e.  X )
9 minvec.j . . . 4  |-  J  =  ( TopOpen `  U )
10 minvec.r . . . 4  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
11 minvec.s . . . 4  |-  S  = inf ( R ,  RR ,  <  )
12 minvec.d . . . 4  |-  D  =  ( ( dist `  U
)  |`  ( X  X.  X ) )
13 minvec.f . . . 4  |-  F  =  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
14 minvec.p . . . 4  |-  P  = 
U. ( J  fLim  ( X filGen F ) )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4a 23201 . . 3  |-  ( ph  ->  P  e.  ( ( J  fLim  ( X filGen F ) )  i^i 
Y ) )
161, 15sseldi 3601 . 2  |-  ( ph  ->  P  e.  Y )
1712oveqi 6663 . . . . . . 7  |-  ( A D P )  =  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )
182, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14minveclem4b 23202 . . . . . . . 8  |-  ( ph  ->  P  e.  X )
198, 18ovresd 6801 . . . . . . 7  |-  ( ph  ->  ( A ( (
dist `  U )  |`  ( X  X.  X
) ) P )  =  ( A (
dist `  U ) P ) )
2017, 19syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( A D P )  =  ( A ( dist `  U
) P ) )
21 cphngp 22973 . . . . . . . 8  |-  ( U  e.  CPreHil  ->  U  e. NrmGrp )
225, 21syl 17 . . . . . . 7  |-  ( ph  ->  U  e. NrmGrp )
23 eqid 2622 . . . . . . . 8  |-  ( dist `  U )  =  (
dist `  U )
244, 2, 3, 23ngpds 22408 . . . . . . 7  |-  ( ( U  e. NrmGrp  /\  A  e.  X  /\  P  e.  X )  ->  ( A ( dist `  U
) P )  =  ( N `  ( A  .-  P ) ) )
2522, 8, 18, 24syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( A ( dist `  U ) P )  =  ( N `  ( A  .-  P ) ) )
2620, 25eqtrd 2656 . . . . 5  |-  ( ph  ->  ( A D P )  =  ( N `
 ( A  .-  P ) ) )
2726adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  =  ( N `  ( A  .-  P ) ) )
28 ngpms 22404 . . . . . . . 8  |-  ( U  e. NrmGrp  ->  U  e.  MetSp )
292, 12msmet 22262 . . . . . . . 8  |-  ( U  e.  MetSp  ->  D  e.  ( Met `  X ) )
3022, 28, 293syl 18 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
31 metcl 22137 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  ( A D P )  e.  RR )
3230, 8, 18, 31syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( A D P )  e.  RR )
3332adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  e.  RR )
342, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem4c 23196 . . . . . 6  |-  ( ph  ->  S  e.  RR )
3534adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  e.  RR )
3622adantr 481 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e. NrmGrp )
37 cphlmod 22974 . . . . . . . . 9  |-  ( U  e.  CPreHil  ->  U  e.  LMod )
385, 37syl 17 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
3938adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  LMod )
408adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
41 eqid 2622 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
422, 41lssss 18937 . . . . . . . . 9  |-  ( Y  e.  ( LSubSp `  U
)  ->  Y  C_  X
)
436, 42syl 17 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
4443sselda 3603 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
452, 3lmodvsubcl 18908 . . . . . . 7  |-  ( ( U  e.  LMod  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .-  y )  e.  X )
4639, 40, 44, 45syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A  .-  y )  e.  X )
472, 4nmcl 22420 . . . . . 6  |-  ( ( U  e. NrmGrp  /\  ( A  .-  y )  e.  X )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4836, 46, 47syl2anc 693 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  RR )
4934, 32ltnled 10184 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  <->  -.  ( A D P )  <_  S ) )
502, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13minveclem3b 23199 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( fBas `  Y ) )
51 fbsspw 21636 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
5250, 51syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  C_  ~P Y
)
53 sspwb 4917 . . . . . . . . . . . . . . . . . . . 20  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
5443, 53sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ~P Y  C_  ~P X )
5552, 54sstrd 3613 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  C_  ~P X
)
56 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  U )  e.  _V
572, 56eqeltri 2697 . . . . . . . . . . . . . . . . . . 19  |-  X  e. 
_V
5857a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  X  e.  _V )
59 fbasweak 21669 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
6050, 55, 58, 59syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( fBas `  X ) )
6160adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  e.  ( fBas `  X )
)
62 fgcl 21682 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
6361, 62syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( X filGen F )  e.  ( Fil `  X ) )
64 ssfg 21676 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
6561, 64syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  F  C_  ( X filGen F ) )
66 minvec.t . . . . . . . . . . . . . . . . . . 19  |-  T  =  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )
6732, 34readdcld 10069 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( A D P )  +  S
)  e.  RR )
6867rehalfcld 11279 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( A D P )  +  S )  /  2
)  e.  RR )
6968resqcld 13035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  e.  RR )
7034resqcld 13035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S ^ 2 )  e.  RR )
7169, 70resubcld 10458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( ( ( A D P )  +  S )  /  2 ) ^
2 )  -  ( S ^ 2 ) )  e.  RR )
7271adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR )
7334, 32, 34ltadd1d 10620 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( S  <  ( A D P )  <->  ( S  +  S )  <  (
( A D P )  +  S ) ) )
7434recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  S  e.  CC )
75742timesd 11275 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  x.  S
)  =  ( S  +  S ) )
7675breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
( S  +  S
)  <  ( ( A D P )  +  S ) ) )
77 2re 11090 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  RR
78 2pos 11112 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
7977, 78pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2  e.  RR  /\  0  <  2 )
8079a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
81 ltmuldiv2 10897 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  S )  <  ( ( A D P )  +  S )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
8234, 67, 80, 81syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2  x.  S )  <  (
( A D P )  +  S )  <-> 
S  <  ( (
( A D P )  +  S )  /  2 ) ) )
8373, 76, 823bitr2d 296 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  ( A D P )  <->  S  <  ( ( ( A D P )  +  S
)  /  2 ) ) )
842, 3, 4, 5, 6, 7, 8, 9, 10minveclem1 23195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
8584simp3d 1075 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
8684simp1d 1073 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  C_  RR )
8784simp2d 1074 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  R  =/=  (/) )
88 0re 10040 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  e.  RR
89 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  0  ->  (
x  <_  w  <->  0  <_  w ) )
9089ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  0  ->  ( A. w  e.  R  x  <_  w  <->  A. w  e.  R  0  <_  w ) )
9190rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 0  e.  RR  /\  A. w  e.  R  0  <_  w )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9288, 85, 91sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. x  e.  RR  A. w  e.  R  x  <_  w )
9388a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  0  e.  RR )
94 infregelb 11007 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  C_  RR  /\  R  =/=  (/)  /\  E. x  e.  RR  A. w  e.  R  x  <_  w )  /\  0  e.  RR )  ->  (
0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R  0  <_  w ) )
9586, 87, 92, 93, 94syl31anc 1329 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 0  <_ inf ( R ,  RR ,  <  )  <->  A. w  e.  R 
0  <_  w )
)
9685, 95mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_ inf ( R ,  RR ,  <  )
)
9796, 11syl6breqr 4695 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  S )
98 metge0 22150 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  P  e.  X )  ->  0  <_  ( A D P ) )
9930, 8, 18, 98syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  0  <_  ( A D P ) )
10032, 34, 99, 97addge0d 10603 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  0  <_  ( ( A D P )  +  S ) )
101 divge0 10892 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A D P )  +  S )  e.  RR  /\  0  <_  ( ( A D P )  +  S ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  0  <_  ( ( ( A D P )  +  S
)  /  2 ) )
10267, 100, 80, 101syl21anc 1325 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  0  <_  ( (
( A D P )  +  S )  /  2 ) )
10334, 68, 97, 102lt2sqd 13043 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( S  <  (
( ( A D P )  +  S
)  /  2 )  <-> 
( S ^ 2 )  <  ( ( ( ( A D P )  +  S
)  /  2 ) ^ 2 ) ) )
10470, 69posdifd 10614 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( S ^
2 )  <  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  <->  0  <  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) ) )
10583, 103, 1043bitrd 294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S  <  ( A D P )  <->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) ) )
106105biimpa 501 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  0  <  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
10772, 106elrpd 11869 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) )  e.  RR+ )
10866, 107syl5eqel 2705 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  T  e.  RR+ )
1096adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  e.  ( LSubSp `  U )
)
110 rabexg 4812 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  e.  ( LSubSp `  U
)  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
111109, 110syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )
112 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) } )  =  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_ 
( ( S ^
2 )  +  r ) } )
113 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  T  ->  (
( S ^ 2 )  +  r )  =  ( ( S ^ 2 )  +  T ) )
114113breq2d 4665 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  T  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r )  <->  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) ) )
115114rabbidv 3189 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  T  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  r ) }  =  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  T ) } )
116112, 115elrnmpt1s 5373 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  RR+  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  _V )  ->  { y  e.  Y  |  ( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
117108, 111, 116syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ran  ( r  e.  RR+  |->  { y  e.  Y  |  ( ( A D y ) ^
2 )  <_  (
( S ^ 2 )  +  r ) } ) )
118117, 13syl6eleqr 2712 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  F )
11965, 118sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F ) )
120 ssrab2 3687 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  X
121120a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  X
)
12266oveq2i 6661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S ^ 2 )  +  T )  =  ( ( S ^
2 )  +  ( ( ( ( ( A D P )  +  S )  / 
2 ) ^ 2 )  -  ( S ^ 2 ) ) )
12370ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  RR )
124123recnd 10068 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( S ^ 2 )  e.  CC )
12568ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D P )  +  S
)  /  2 )  e.  RR )
126125resqcld 13035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  RR )
127126recnd 10068 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( ( A D P )  +  S )  /  2
) ^ 2 )  e.  CC )
128124, 127pncan3d 10395 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  ( ( ( ( ( A D P )  +  S )  /  2
) ^ 2 )  -  ( S ^
2 ) ) )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
129122, 128syl5eq 2668 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( S ^ 2 )  +  T )  =  ( ( ( ( A D P )  +  S )  /  2 ) ^
2 ) )
130129breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
13130ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  D  e.  ( Met `  X
) )
1328ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  A  e.  X )
13344adantlr 751 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  y  e.  X )
134 metcl 22137 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  ( A D y )  e.  RR )
135131, 132, 133, 134syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  ( A D y )  e.  RR )
136 metge0 22150 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  y  e.  X )  ->  0  <_  ( A D y ) )
137131, 132, 133, 136syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( A D y ) )
138102ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  0  <_  ( ( ( A D P )  +  S )  /  2
) )
139135, 125, 137, 138le2sqd 13044 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( ( A D y ) ^
2 )  <_  (
( ( ( A D P )  +  S )  /  2
) ^ 2 ) ) )
140130, 139bitr4d 271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  S  <  ( A D P ) )  /\  y  e.  Y )  ->  (
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T )  <->  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
141140rabbidva 3188 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  =  { y  e.  Y  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )
14243adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  Y  C_  X
)
143 rabss2 3685 . . . . . . . . . . . . . . . . 17  |-  ( Y 
C_  X  ->  { y  e.  Y  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
144142, 143syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  C_  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) } )
145141, 144eqsstrd 3639 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  Y  |  (
( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
146 filss 21657 . . . . . . . . . . . . . . 15  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  e.  ( X filGen F )  /\  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } 
C_  X  /\  {
y  e.  Y  | 
( ( A D y ) ^ 2 )  <_  ( ( S ^ 2 )  +  T ) }  C_  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } ) )  ->  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  e.  ( X filGen F ) )
14763, 119, 121, 145, 146syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  ( X filGen F ) )
148 flimclsi 21782 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( X filGen F )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
149147, 148syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( J  fLim  ( X filGen F ) )  C_  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } ) )
150 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( ( J  fLim  ( X filGen F ) )  i^i 
Y )  C_  ( J  fLim  ( X filGen F ) )
151150, 15sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  ( J 
fLim  ( X filGen F ) ) )
152151adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( J  fLim  ( X
filGen F ) ) )
153149, 152sseldd 3604 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  ( ( cls `  J
) `  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) } ) )
154 ngpxms 22405 . . . . . . . . . . . . . . . . 17  |-  ( U  e. NrmGrp  ->  U  e.  *MetSp )
1552, 12xmsxmet 22261 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  *MetSp  ->  D  e.  ( *Met `  X ) )
15622, 154, 1553syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  ( *Met `  X ) )
157156adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  D  e.  ( *Met `  X
) )
1588adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  A  e.  X )
15968adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e.  RR )
160159rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( (
( A D P )  +  S )  /  2 )  e. 
RR* )
161 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
162 eqid 2622 . . . . . . . . . . . . . . . 16  |-  { y  e.  X  |  ( A D y )  <_  ( ( ( A D P )  +  S )  / 
2 ) }  =  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }
163161, 162blcld 22310 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  ( ( ( A D P )  +  S )  /  2
)  e.  RR* )  ->  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) }  e.  ( Clsd `  ( MetOpen `  D )
) )
164157, 158, 160, 163syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  ( MetOpen `  D
) ) )
1659, 2, 12xmstopn 22256 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  *MetSp  ->  J  =  ( MetOpen `  D
) )
16622, 154, 1653syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  =  ( MetOpen `  D ) )
167166adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  J  =  ( MetOpen `  D )
)
168167fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( Clsd `  J )  =  (
Clsd `  ( MetOpen `  D
) ) )
169164, 168eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  e.  (
Clsd `  J )
)
170 cldcls 20846 . . . . . . . . . . . . 13  |-  ( { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) }  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
171169, 170syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( ( cls `  J ) `  { y  e.  X  |  ( A D y )  <_  (
( ( A D P )  +  S
)  /  2 ) } )  =  {
y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
172153, 171eleqtrd 2703 . . . . . . . . . . 11  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  P  e.  { y  e.  X  | 
( A D y )  <_  ( (
( A D P )  +  S )  /  2 ) } )
173 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( y  =  P  ->  ( A D y )  =  ( A D P ) )
174173breq1d 4663 . . . . . . . . . . . . 13  |-  ( y  =  P  ->  (
( A D y )  <_  ( (
( A D P )  +  S )  /  2 )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
175174elrab 3363 . . . . . . . . . . . 12  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  <->  ( P  e.  X  /\  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) ) )
176175simprbi 480 . . . . . . . . . . 11  |-  ( P  e.  { y  e.  X  |  ( A D y )  <_ 
( ( ( A D P )  +  S )  /  2
) }  ->  ( A D P )  <_ 
( ( ( A D P )  +  S )  /  2
) )
177172, 176syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )
17832, 34, 32leadd2d 10622 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
17932recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A D P )  e.  CC )
1801792timesd 11275 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( A D P ) )  =  ( ( A D P )  +  ( A D P ) ) )
181180breq1d 4663 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( ( A D P )  +  ( A D P ) )  <_  ( ( A D P )  +  S ) ) )
182 lemuldiv2 10904 . . . . . . . . . . . . . 14  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  ( A D P ) )  <_  ( ( A D P )  +  S )  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18379, 182mp3an3 1413 . . . . . . . . . . . . 13  |-  ( ( ( A D P )  e.  RR  /\  ( ( A D P )  +  S
)  e.  RR )  ->  ( ( 2  x.  ( A D P ) )  <_ 
( ( A D P )  +  S
)  <->  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) ) )
18432, 67, 183syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  ( A D P ) )  <_  (
( A D P )  +  S )  <-> 
( A D P )  <_  ( (
( A D P )  +  S )  /  2 ) ) )
185178, 181, 1843bitr2d 296 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A D P )  <_  S  <->  ( A D P )  <_  ( ( ( A D P )  +  S )  / 
2 ) ) )
186185biimpar 502 . . . . . . . . . 10  |-  ( (
ph  /\  ( A D P )  <_  (
( ( A D P )  +  S
)  /  2 ) )  ->  ( A D P )  <_  S
)
187177, 186syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  S  <  ( A D P ) )  ->  ( A D P )  <_  S
)
188187ex 450 . . . . . . . 8  |-  ( ph  ->  ( S  <  ( A D P )  -> 
( A D P )  <_  S )
)
18949, 188sylbird 250 . . . . . . 7  |-  ( ph  ->  ( -.  ( A D P )  <_  S  ->  ( A D P )  <_  S
) )
190189pm2.18d 124 . . . . . 6  |-  ( ph  ->  ( A D P )  <_  S )
191190adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_  S )
19286adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  R  C_  RR )
19392adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  E. x  e.  RR  A. w  e.  R  x  <_  w
)
194 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  Y )
195 fvex 6201 . . . . . . . . 9  |-  ( N `
 ( A  .-  y ) )  e. 
_V
196 eqid 2622 . . . . . . . . . 10  |-  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) )
197196elrnmpt1 5374 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  ( N `  ( A 
.-  y ) )  e.  _V )  -> 
( N `  ( A  .-  y ) )  e.  ran  ( y  e.  Y  |->  ( N `
 ( A  .-  y ) ) ) )
198194, 195, 197sylancl 694 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e. 
ran  ( y  e.  Y  |->  ( N `  ( A  .-  y ) ) ) )
199198, 10syl6eleqr 2712 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  y ) )  e.  R )
200 infrelb 11008 . . . . . . 7  |-  ( ( R  C_  RR  /\  E. x  e.  RR  A. w  e.  R  x  <_  w  /\  ( N `  ( A  .-  y ) )  e.  R )  -> inf ( R ,  RR ,  <  )  <_ 
( N `  ( A  .-  y ) ) )
201192, 193, 199, 200syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  -> inf ( R ,  RR ,  <  )  <_  ( N `  ( A  .-  y ) ) )
20211, 201syl5eqbr 4688 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  S  <_  ( N `  ( A  .-  y ) ) )
20333, 35, 48, 191, 202letrd 10194 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( A D P )  <_ 
( N `  ( A  .-  y ) ) )
20427, 203eqbrtrrd 4677 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A  .-  P ) )  <_ 
( N `  ( A  .-  y ) ) )
205204ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )
206 oveq2 6658 . . . . . 6  |-  ( x  =  P  ->  ( A  .-  x )  =  ( A  .-  P
) )
207206fveq2d 6195 . . . . 5  |-  ( x  =  P  ->  ( N `  ( A  .-  x ) )  =  ( N `  ( A  .-  P ) ) )
208207breq1d 4663 . . . 4  |-  ( x  =  P  ->  (
( N `  ( A  .-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  ( N `  ( A  .-  P ) )  <_  ( N `  ( A  .-  y
) ) ) )
209208ralbidv 2986 . . 3  |-  ( x  =  P  ->  ( A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) )  <->  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) ) )
210209rspcev 3309 . 2  |-  ( ( P  e.  Y  /\  A. y  e.  Y  ( N `  ( A 
.-  P ) )  <_  ( N `  ( A  .-  y ) ) )  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A  .-  x
) )  <_  ( N `  ( A  .-  y ) ) )
21116, 205, 210syl2anc 693 1  |-  ( ph  ->  E. x  e.  Y  A. y  e.  Y  ( N `  ( A 
.-  x ) )  <_  ( N `  ( A  .-  y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   ^cexp 12860   Basecbs 15857   ↾s cress 15858   distcds 15950   TopOpenctopn 16082   -gcsg 17424   LModclmod 18863   LSubSpclss 18932   *Metcxmt 19731   Metcme 19732   fBascfbas 19734   filGencfg 19735   MetOpencmopn 19736   Clsdccld 20820   clsccl 20822   Filcfil 21649    fLim cflim 21738   *MetSpcxme 22122   MetSpcmt 22123   normcnm 22381  NrmGrpcngp 22382   CPreHilccph 22966  CMetSpccms 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-phl 19971  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nlm 22391  df-clm 22863  df-cph 22968  df-cfil 23053  df-cmet 23055  df-cms 23132
This theorem is referenced by:  minveclem5  23204
  Copyright terms: Public domain W3C validator