MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop Structured version   Visualization version   Unicode version

Theorem fctop 20808
Description: The finite complement topology on a set  A. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
fctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem fctop
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4458 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
2 ssrab2 3687 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  ~P A
3 sspwuni 4611 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  ~P A 
<-> 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  A )
42, 3mpbi 220 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3615 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  A
)
6 vuniex 6954 . . . . . . . 8  |-  U. y  e.  _V
76elpw 4164 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
85, 7sylibr 224 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  ~P A )
9 uni0c 4464 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
109notbii 310 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
11 rexnal 2995 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1210, 11bitr4i 267 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
13 ssel2 3598 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
14 difeq2 3722 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1514eleq1d 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
16 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1715, 16orbi12d 746 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) ) )
1817elrab 3363 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( z  e.  ~P A  /\  ( ( A 
\  z )  e. 
Fin  \/  z  =  (/) ) ) )
1913, 18sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) )
2019simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) )
2120ord 392 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A  \  z
)  e.  Fin  ->  z  =  (/) ) )
2221con1d 139 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \  z )  e. 
Fin ) )
2322imp 445 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  z )  e. 
Fin )
24 elssuni 4467 . . . . . . . . . . . . . . . 16  |-  ( z  e.  y  ->  z  C_ 
U. y )
2524sscond 3747 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
26 ssfi 8180 . . . . . . . . . . . . . . 15  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  U. y
)  C_  ( A  \  z ) )  -> 
( A  \  U. y )  e.  Fin )
2725, 26sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  z
)  e.  Fin  /\  z  e.  y )  ->  ( A  \  U. y )  e.  Fin )
2827expcom 451 . . . . . . . . . . . . 13  |-  ( z  e.  y  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
2928ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3023, 29mpd 15 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  e.  Fin )
3130exp31 630 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( z  e.  y  ->  ( -.  z  =  (/)  ->  ( A  \  U. y )  e.  Fin ) ) )
3231rexlimdv 3030 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \ 
U. y )  e. 
Fin ) )
3312, 32syl5bi 232 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  e.  Fin ) )
3433con1d 139 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  e.  Fin  ->  U. y  =  (/) ) )
3534orrd 393 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) )
36 difeq2 3722 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
3736eleq1d 2686 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  e.  Fin  <->  ( A  \  U. y )  e.  Fin ) )
38 eqeq1 2626 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
3937, 38orbi12d 746 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) )  <->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) ) )
4039elrab 3363 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( U. y  e. 
~P A  /\  (
( A  \  U. y )  e.  Fin  \/ 
U. y  =  (/) ) ) )
418, 35, 40sylanbrc 698 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
4241ax-gen 1722 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
43 ssinss1 3841 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
44 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
4544elpw 4164 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
4644inex1 4799 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
4746elpw 4164 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
4843, 45, 473imtr4i 281 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
4948ad2antrr 762 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
50 difindi 3881 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
51 unfi 8227 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
y )  u.  ( A  \  z ) )  e.  Fin )
5250, 51syl5eqel 2705 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( A  \  (
y  i^i  z )
)  e.  Fin )
5352orcd 407 . . . . . . . . 9  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
( y  i^i  z
) )  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) )
54 ineq1 3807 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
55 0in 3969 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
5654, 55syl6eq 2672 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
5756olcd 408 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
58 ineq2 3808 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
59 in0 3968 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6058, 59syl6eq 2672 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6160olcd 408 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
6253, 57, 61ccase2 989 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) )  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6362ad2ant2l 782 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6449, 63jca 554 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) ) )
65 difeq2 3722 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
6665eleq1d 2686 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
67 eqeq1 2626 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
6866, 67orbi12d 746 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  y )  e. 
Fin  \/  y  =  (/) ) ) )
6968elrab 3363 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) ) )
7069, 18anbi12i 733 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  <->  ( (
y  e.  ~P A  /\  ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) ) )  /\  ( z  e. 
~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) ) )
71 difeq2 3722 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7271eleq1d 2686 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  ( y  i^i  z
) )  e.  Fin ) )
73 eqeq1 2626 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
7472, 73orbi12d 746 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7574elrab 3363 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( ( y  i^i  z )  e.  ~P A  /\  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7664, 70, 753imtr4i 281 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  -> 
( y  i^i  z
)  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
7776rgen2a 2977 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }
7842, 77pm3.2i 471 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
79 pwexg 4850 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
80 rabexg 4812 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V )
81 istopg 20700 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8279, 80, 813syl 18 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8378, 82mpbiri 248 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top )
84 pwidg 4173 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
85 0fin 8188 . . . . . . 7  |-  (/)  e.  Fin
8685orci 405 . . . . . 6  |-  ( (/)  e.  Fin  \/  A  =  (/) )
8786a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( (/) 
e.  Fin  \/  A  =  (/) ) )
88 difeq2 3722 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
89 difid 3948 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9088, 89syl6eq 2672 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9190eleq1d 2686 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
92 eqeq1 2626 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
9391, 92orbi12d 746 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9493elrab 3363 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( A  e.  ~P A  /\  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9584, 87, 94sylanbrc 698 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
96 elssuni 4467 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  A  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
9795, 96syl 17 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
984a1i 11 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
)
9997, 98eqssd 3620 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
100 istopon 20717 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } ) )
10183, 99, 100sylanbrc 698 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   ` cfv 5888   Fincfn 7955   Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-top 20699  df-topon 20716
This theorem is referenced by:  fctop2  20809
  Copyright terms: Public domain W3C validator