MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   Unicode version

Theorem fin23lem21 9161
Description: Lemma for fin23 9211. 
X is not empty. We only need here that  t has at least one set in its range besides  (/); the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem21  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
Distinct variable groups:    g, i,
t, u, x, a    F, a, t    V, a   
x, a    U, a,
i, u    g, a
Allowed substitution hints:    U( x, t, g)    F( x, u, g, i)    V( x, u, t, g, i)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
2 fin23lem17.f . . 3  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
31, 2fin23lem17 9160 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  e.  ran  U )
41fnseqom 7550 . . . . 5  |-  U  Fn  om
5 fvelrnb 6243 . . . . 5  |-  ( U  Fn  om  ->  ( |^| ran  U  e.  ran  U  <->  E. a  e.  om  ( U `  a )  =  |^| ran  U
) )
64, 5ax-mp 5 . . . 4  |-  ( |^| ran 
U  e.  ran  U  <->  E. a  e.  om  ( U `  a )  =  |^| ran  U )
7 id 22 . . . . . . 7  |-  ( a  e.  om  ->  a  e.  om )
8 vex 3203 . . . . . . . . . 10  |-  t  e. 
_V
9 f1f1orn 6148 . . . . . . . . . 10  |-  ( t : om -1-1-> V  -> 
t : om -1-1-onto-> ran  t )
10 f1oen3g 7971 . . . . . . . . . 10  |-  ( ( t  e.  _V  /\  t : om -1-1-onto-> ran  t )  ->  om  ~~  ran  t )
118, 9, 10sylancr 695 . . . . . . . . 9  |-  ( t : om -1-1-> V  ->  om  ~~  ran  t )
12 ominf 8172 . . . . . . . . 9  |-  -.  om  e.  Fin
13 ssdif0 3942 . . . . . . . . . . 11  |-  ( ran  t  C_  { (/) }  <->  ( ran  t  \  { (/) } )  =  (/) )
14 snfi 8038 . . . . . . . . . . . . 13  |-  { (/) }  e.  Fin
15 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( { (/) }  e.  Fin  /\ 
ran  t  C_  { (/) } )  ->  ran  t  e. 
Fin )
1614, 15mpan 706 . . . . . . . . . . . 12  |-  ( ran  t  C_  { (/) }  ->  ran  t  e.  Fin )
17 enfi 8176 . . . . . . . . . . . 12  |-  ( om 
~~  ran  t  ->  ( om  e.  Fin  <->  ran  t  e. 
Fin ) )
1816, 17syl5ibr 236 . . . . . . . . . . 11  |-  ( om 
~~  ran  t  ->  ( ran  t  C_  { (/) }  ->  om  e.  Fin ) )
1913, 18syl5bir 233 . . . . . . . . . 10  |-  ( om 
~~  ran  t  ->  ( ( ran  t  \  { (/) } )  =  (/)  ->  om  e.  Fin ) )
2019necon3bd 2808 . . . . . . . . 9  |-  ( om 
~~  ran  t  ->  ( -.  om  e.  Fin  ->  ( ran  t  \  { (/) } )  =/=  (/) ) )
2111, 12, 20mpisyl 21 . . . . . . . 8  |-  ( t : om -1-1-> V  -> 
( ran  t  \  { (/) } )  =/=  (/) )
22 n0 3931 . . . . . . . . 9  |-  ( ( ran  t  \  { (/)
} )  =/=  (/)  <->  E. a 
a  e.  ( ran  t  \  { (/) } ) )
23 eldifsn 4317 . . . . . . . . . . 11  |-  ( a  e.  ( ran  t  \  { (/) } )  <->  ( a  e.  ran  t  /\  a  =/=  (/) ) )
24 elssuni 4467 . . . . . . . . . . . 12  |-  ( a  e.  ran  t  -> 
a  C_  U. ran  t
)
25 ssn0 3976 . . . . . . . . . . . 12  |-  ( ( a  C_  U. ran  t  /\  a  =/=  (/) )  ->  U. ran  t  =/=  (/) )
2624, 25sylan 488 . . . . . . . . . . 11  |-  ( ( a  e.  ran  t  /\  a  =/=  (/) )  ->  U. ran  t  =/=  (/) )
2723, 26sylbi 207 . . . . . . . . . 10  |-  ( a  e.  ( ran  t  \  { (/) } )  ->  U. ran  t  =/=  (/) )
2827exlimiv 1858 . . . . . . . . 9  |-  ( E. a  a  e.  ( ran  t  \  { (/)
} )  ->  U. ran  t  =/=  (/) )
2922, 28sylbi 207 . . . . . . . 8  |-  ( ( ran  t  \  { (/)
} )  =/=  (/)  ->  U. ran  t  =/=  (/) )
3021, 29syl 17 . . . . . . 7  |-  ( t : om -1-1-> V  ->  U. ran  t  =/=  (/) )
311fin23lem14 9155 . . . . . . 7  |-  ( ( a  e.  om  /\  U.
ran  t  =/=  (/) )  -> 
( U `  a
)  =/=  (/) )
327, 30, 31syl2anr 495 . . . . . 6  |-  ( ( t : om -1-1-> V  /\  a  e.  om )  ->  ( U `  a )  =/=  (/) )
33 neeq1 2856 . . . . . 6  |-  ( ( U `  a )  =  |^| ran  U  ->  ( ( U `  a )  =/=  (/)  <->  |^| ran  U  =/=  (/) ) )
3432, 33syl5ibcom 235 . . . . 5  |-  ( ( t : om -1-1-> V  /\  a  e.  om )  ->  ( ( U `
 a )  = 
|^| ran  U  ->  |^|
ran  U  =/=  (/) ) )
3534rexlimdva 3031 . . . 4  |-  ( t : om -1-1-> V  -> 
( E. a  e. 
om  ( U `  a )  =  |^| ran 
U  ->  |^| ran  U  =/=  (/) ) )
366, 35syl5bi 232 . . 3  |-  ( t : om -1-1-> V  -> 
( |^| ran  U  e. 
ran  U  ->  |^| ran  U  =/=  (/) ) )
3736adantl 482 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  -> 
( |^| ran  U  e. 
ran  U  ->  |^| ran  U  =/=  (/) ) )
383, 37mpd 15 1  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436   |^|cint 4475   class class class wbr 4653   ran crn 5115   suc csuc 5725    Fn wfn 5883   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542    ^m cmap 7857    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  fin23lem31  9165
  Copyright terms: Public domain W3C validator