MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Structured version   Visualization version   Unicode version

Theorem ominf 8172
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf  |-  -.  om  e.  Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 7979 . . 3  |-  ( om  e.  Fin  <->  E. x  e.  om  om  ~~  x
)
2 nnord 7073 . . . . . . . 8  |-  ( x  e.  om  ->  Ord  x )
3 ordom 7074 . . . . . . . 8  |-  Ord  om
4 ordelssne 5750 . . . . . . . 8  |-  ( ( Ord  x  /\  Ord  om )  ->  ( x  e.  om  <->  ( x  C_  om 
/\  x  =/=  om ) ) )
52, 3, 4sylancl 694 . . . . . . 7  |-  ( x  e.  om  ->  (
x  e.  om  <->  ( x  C_ 
om  /\  x  =/=  om ) ) )
65ibi 256 . . . . . 6  |-  ( x  e.  om  ->  (
x  C_  om  /\  x  =/=  om ) )
7 df-pss 3590 . . . . . 6  |-  ( x 
C.  om  <->  ( x  C_  om 
/\  x  =/=  om ) )
86, 7sylibr 224 . . . . 5  |-  ( x  e.  om  ->  x  C. 
om )
9 ensym 8005 . . . . 5  |-  ( om 
~~  x  ->  x  ~~  om )
10 pssinf 8170 . . . . 5  |-  ( ( x  C.  om  /\  x  ~~  om )  ->  -.  om  e.  Fin )
118, 9, 10syl2an 494 . . . 4  |-  ( ( x  e.  om  /\  om 
~~  x )  ->  -.  om  e.  Fin )
1211rexlimiva 3028 . . 3  |-  ( E. x  e.  om  om  ~~  x  ->  -.  om  e.  Fin )
131, 12sylbi 207 . 2  |-  ( om  e.  Fin  ->  -.  om  e.  Fin )
14 pm2.01 180 . 2  |-  ( ( om  e.  Fin  ->  -. 
om  e.  Fin )  ->  -.  om  e.  Fin )
1513, 14ax-mp 5 1  |-  -.  om  e.  Fin
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574    C. wpss 3575   class class class wbr 4653   Ord word 5722   omcom 7065    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  fineqv  8175  nnsdomg  8219  ackbij1lem18  9059  fin23lem21  9161  fin23lem28  9162  fin23lem30  9164  isfin1-2  9207  uzinf  12764  bitsf1  15168  odhash  17989  ufinffr  21733  poimirlem30  33439  diophin  37336  diophren  37377  fiphp3d  37383
  Copyright terms: Public domain W3C validator