MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem33 Structured version   Visualization version   Unicode version

Theorem fin23lem33 9167
Description: Lemma for fin23 9211. Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem33.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem33  |-  ( G  e.  F  ->  E. f A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) ) )
Distinct variable groups:    a, b,
f, g, x, G    F, a
Allowed substitution hints:    F( x, f, g, b)

Proof of Theorem fin23lem33
Dummy variables  c 
d  e  i  j  k  l  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( j  =  c  ->  (
e `  j )  =  ( e `  c ) )
21ineq1d 3813 . . . . . 6  |-  ( j  =  c  ->  (
( e `  j
)  i^i  k )  =  ( ( e `
 c )  i^i  k ) )
32eqeq1d 2624 . . . . 5  |-  ( j  =  c  ->  (
( ( e `  j )  i^i  k
)  =  (/)  <->  ( (
e `  c )  i^i  k )  =  (/) ) )
43, 2ifbieq2d 4111 . . . 4  |-  ( j  =  c  ->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) )  =  if ( ( ( e `  c
)  i^i  k )  =  (/) ,  k ,  ( ( e `  c )  i^i  k
) ) )
5 ineq2 3808 . . . . . 6  |-  ( k  =  d  ->  (
( e `  c
)  i^i  k )  =  ( ( e `
 c )  i^i  d ) )
65eqeq1d 2624 . . . . 5  |-  ( k  =  d  ->  (
( ( e `  c )  i^i  k
)  =  (/)  <->  ( (
e `  c )  i^i  d )  =  (/) ) )
7 id 22 . . . . 5  |-  ( k  =  d  ->  k  =  d )
86, 7, 5ifbieq12d 4113 . . . 4  |-  ( k  =  d  ->  if ( ( ( e `
 c )  i^i  k )  =  (/) ,  k ,  ( ( e `  c )  i^i  k ) )  =  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) )
94, 8cbvmpt2v 6735 . . 3  |-  ( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `  j )  i^i  k
)  =  (/) ,  k ,  ( ( e `
 j )  i^i  k ) ) )  =  ( c  e. 
om ,  d  e. 
_V  |->  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) )
10 eqid 2622 . . 3  |-  U. ran  e  =  U. ran  e
11 seqomeq12 7549 . . 3  |-  ( ( ( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) )  =  ( c  e.  om ,  d  e.  _V  |->  if ( ( ( e `  c )  i^i  d
)  =  (/) ,  d ,  ( ( e `
 c )  i^i  d ) ) )  /\  U. ran  e  =  U. ran  e )  -> seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  = seq𝜔 ( ( c  e. 
om ,  d  e. 
_V  |->  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) ) , 
U. ran  e )
)
129, 10, 11mp2an 708 . 2  |- seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  = seq𝜔 ( ( c  e. 
om ,  d  e. 
_V  |->  if ( ( ( e `  c
)  i^i  d )  =  (/) ,  d ,  ( ( e `  c )  i^i  d
) ) ) , 
U. ran  e )
13 fin23lem33.f . 2  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
14 fveq2 6191 . . . 4  |-  ( l  =  y  ->  (
e `  l )  =  ( e `  y ) )
1514sseq2d 3633 . . 3  |-  ( l  =  y  ->  ( |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
)  <->  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  y
) ) )
1615cbvrabv 3199 . 2  |-  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  =  { y  e.  om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  y ) }
17 eqid 2622 . 2  |-  ( g  e.  om  |->  ( iota_ x  e.  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  ( x  i^i 
{ l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } )  ~~  g ) )  =  ( g  e.  om  |->  ( iota_ x  e.  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) }  ( x  i^i  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } )  ~~  g
) )
18 eqid 2622 . 2  |-  ( g  e.  om  |->  ( iota_ x  e.  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ( x  i^i  ( om 
\  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) )  ~~  g ) )  =  ( g  e.  om  |->  ( iota_ x  e.  ( om  \  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) ( x  i^i  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ) 
~~  g ) )
19 eqid 2622 . 2  |-  if ( { l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) }  e.  Fin ,  ( e  o.  (
g  e.  om  |->  (
iota_ x  e.  ( om  \  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) ( x  i^i  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ) 
~~  g ) ) ) ,  ( ( i  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  |->  ( ( e `
 i )  \  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )
) )  o.  (
g  e.  om  |->  (
iota_ x  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  ( x  i^i 
{ l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } )  ~~  g ) ) ) )  =  if ( { l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) }  e.  Fin ,  ( e  o.  (
g  e.  om  |->  (
iota_ x  e.  ( om  \  { l  e. 
om  |  |^| ran seq𝜔 ( ( j  e.  om , 
k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) } ) ( x  i^i  ( om  \  {
l  e.  om  |  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } ) ) 
~~  g ) ) ) ,  ( ( i  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  |->  ( ( e `
 i )  \  |^| ran seq𝜔
( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )
) )  o.  (
g  e.  om  |->  (
iota_ x  e.  { l  e.  om  |  |^| ran seq𝜔 (
( j  e.  om ,  k  e.  _V  |->  if ( ( ( e `
 j )  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k ) ) ) ,  U. ran  e )  C_  (
e `  l ) }  ( x  i^i 
{ l  e.  om  |  |^| ran seq𝜔 ( ( j  e. 
om ,  k  e. 
_V  |->  if ( ( ( e `  j
)  i^i  k )  =  (/) ,  k ,  ( ( e `  j )  i^i  k
) ) ) , 
U. ran  e )  C_  ( e `  l
) } )  ~~  g ) ) ) )
2012, 13, 16, 17, 18, 19fin23lem32 9166 1  |-  ( G  e.  F  ->  E. f A. b ( ( b : om -1-1-> _V  /\  U.
ran  b  C_  G
)  ->  ( (
f `  b ) : om -1-1-> _V  /\  U. ran  ( f `  b
)  C.  U. ran  b
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    o. ccom 5118   suc csuc 5725   -1-1->wf1 5885   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542    ^m cmap 7857    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by:  fin23lem41  9174
  Copyright terms: Public domain W3C validator