MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcfi Structured version   Visualization version   Unicode version

Theorem cnpfcfi 21844
Description: Lemma for cnpfcf 21845. If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcfi  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )

Proof of Theorem cnpfcfi
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . 3  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fClus  L ) )
2 eqid 2622 . . . . . 6  |-  U. J  =  U. J
32fclsfil 21814 . . . . 5  |-  ( A  e.  ( J  fClus  L )  ->  L  e.  ( Fil `  U. J
) )
433ad2ant2 1083 . . . 4  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  L  e.  ( Fil `  U. J
) )
5 fclsfnflim 21831 . . . 4  |-  ( L  e.  ( Fil `  U. J )  ->  ( A  e.  ( J  fClus  L )  <->  E. f  e.  ( Fil `  U. J ) ( L 
C_  f  /\  A  e.  ( J  fLim  f
) ) ) )
64, 5syl 17 . . 3  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fClus  L )  <->  E. f  e.  ( Fil `  U. J ) ( L  C_  f  /\  A  e.  ( J  fLim  f ) ) ) )
71, 6mpbid 222 . 2  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  E. f  e.  ( Fil `  U. J ) ( L 
C_  f  /\  A  e.  ( J  fLim  f
) ) )
8 simpl1 1064 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  K  e.  Top )
9 eqid 2622 . . . . . . 7  |-  U. K  =  U. K
109toptopon 20722 . . . . . 6  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 208 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  K  e.  (TopOn `  U. K ) )
12 simprl 794 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  f  e.  ( Fil `  U. J
) )
132, 9cnpf 21051 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  F : U. J --> U. K
)
14133ad2ant3 1084 . . . . . 6  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : U. J --> U. K )
1514adantr 481 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  F : U. J
--> U. K )
16 flfssfcf 21842 . . . . 5  |-  ( ( K  e.  (TopOn `  U. K )  /\  f  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fLimf  f ) `  F )  C_  (
( K  fClusf  f ) `
 F ) )
1711, 12, 15, 16syl3anc 1326 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fLimf  f ) `  F
)  C_  ( ( K  fClusf  f ) `  F ) )
189topopn 20711 . . . . . . . 8  |-  ( K  e.  Top  ->  U. K  e.  K )
198, 18syl 17 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  U. K  e.  K
)
204adantr 481 . . . . . . . 8  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  e.  ( Fil `  U. J
) )
21 filfbas 21652 . . . . . . . 8  |-  ( L  e.  ( Fil `  U. J )  ->  L  e.  ( fBas `  U. J ) )
2220, 21syl 17 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  e.  (
fBas `  U. J ) )
23 fmfil 21748 . . . . . . 7  |-  ( ( U. K  e.  K  /\  L  e.  ( fBas `  U. J )  /\  F : U. J
--> U. K )  -> 
( ( U. K  FilMap  F ) `  L
)  e.  ( Fil `  U. K ) )
2419, 22, 15, 23syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( U. K  FilMap  F ) `  L )  e.  ( Fil `  U. K
) )
25 filfbas 21652 . . . . . . . 8  |-  ( f  e.  ( Fil `  U. J )  ->  f  e.  ( fBas `  U. J ) )
2625ad2antrl 764 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  f  e.  (
fBas `  U. J ) )
27 simprrl 804 . . . . . . 7  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  L  C_  f
)
28 fmss 21750 . . . . . . 7  |-  ( ( ( U. K  e.  K  /\  L  e.  ( fBas `  U. J )  /\  f  e.  ( fBas `  U. J ) )  /\  ( F : U. J --> U. K  /\  L  C_  f ) )  -> 
( ( U. K  FilMap  F ) `  L
)  C_  ( ( U. K  FilMap  F ) `
 f ) )
2919, 22, 26, 15, 27, 28syl32anc 1334 . . . . . 6  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( U. K  FilMap  F ) `  L )  C_  (
( U. K  FilMap  F ) `  f ) )
30 fclsss2 21827 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
( U. K  FilMap  F ) `  L )  e.  ( Fil `  U. K )  /\  (
( U. K  FilMap  F ) `  L ) 
C_  ( ( U. K  FilMap  F ) `  f ) )  -> 
( K  fClus  ( ( U. K  FilMap  F ) `
 f ) ) 
C_  ( K  fClus  ( ( U. K  FilMap  F ) `  L ) ) )
3111, 24, 29, 30syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( K  fClus  ( ( U. K  FilMap  F ) `  f ) )  C_  ( K  fClus  ( ( U. K  FilMap  F ) `  L
) ) )
32 fcfval 21837 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  f  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fClusf  f ) `  F )  =  ( K  fClus  ( ( U. K  FilMap  F ) `
 f ) ) )
3311, 12, 15, 32syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  f ) `  F
)  =  ( K 
fClus  ( ( U. K  FilMap  F ) `  f
) ) )
34 fcfval 21837 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( K  fClusf  L ) `  F )  =  ( K  fClus  ( ( U. K  FilMap  F ) `
 L ) ) )
3511, 20, 15, 34syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  L ) `  F
)  =  ( K 
fClus  ( ( U. K  FilMap  F ) `  L
) ) )
3631, 33, 353sstr4d 3648 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fClusf  f ) `  F
)  C_  ( ( K  fClusf  L ) `  F ) )
3717, 36sstrd 3613 . . 3  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( ( K 
fLimf  f ) `  F
)  C_  ( ( K  fClusf  L ) `  F ) )
38 simprrr 805 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  A  e.  ( J  fLim  f )
)
39 simpl3 1066 . . . 4  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  F  e.  ( ( J  CnP  K
) `  A )
)
40 cnpflfi 21803 . . . 4  |-  ( ( A  e.  ( J 
fLim  f )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  -> 
( F `  A
)  e.  ( ( K  fLimf  f ) `  F ) )
4138, 39, 40syl2anc 693 . . 3  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( F `  A )  e.  ( ( K  fLimf  f ) `
 F ) )
4237, 41sseldd 3604 . 2  |-  ( ( ( K  e.  Top  /\  A  e.  ( J 
fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( f  e.  ( Fil `  U. J )  /\  ( L  C_  f  /\  A  e.  ( J  fLim  f
) ) ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )
437, 42rexlimddv 3035 1  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  L ) `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   U.cuni 4436   -->wf 5884   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   Topctop 20698  TopOnctopon 20715    CnP ccnp 21029   Filcfil 21649    FilMap cfm 21737    fLim cflim 21738    fLimf cflf 21739    fClus cfcls 21740    fClusf cfcf 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cnp 21032  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-fcf 21746
This theorem is referenced by:  cnpfcf  21845
  Copyright terms: Public domain W3C validator