| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpwwe2lem11 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fpwwe2 9465. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| fpwwe2.1 |
|
| fpwwe2.2 |
|
| fpwwe2.3 |
|
| fpwwe2.4 |
|
| Ref | Expression |
|---|---|
| fpwwe2lem11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 |
. . . . . 6
| |
| 2 | 1 | relopabi 5245 |
. . . . 5
|
| 3 | 2 | a1i 11 |
. . . 4
|
| 4 | simprr 796 |
. . . . . . . . 9
| |
| 5 | fpwwe2.2 |
. . . . . . . . . . . . . . 15
| |
| 6 | 1, 5 | fpwwe2lem2 9454 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | simprbda 653 |
. . . . . . . . . . . . 13
|
| 8 | 7 | simprd 479 |
. . . . . . . . . . . 12
|
| 9 | 8 | adantrl 752 |
. . . . . . . . . . 11
|
| 10 | 9 | adantr 481 |
. . . . . . . . . 10
|
| 11 | df-ss 3588 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | sylib 208 |
. . . . . . . . 9
|
| 13 | 4, 12 | eqtrd 2656 |
. . . . . . . 8
|
| 14 | simprr 796 |
. . . . . . . . 9
| |
| 15 | 1, 5 | fpwwe2lem2 9454 |
. . . . . . . . . . . . . 14
|
| 16 | 15 | simprbda 653 |
. . . . . . . . . . . . 13
|
| 17 | 16 | simprd 479 |
. . . . . . . . . . . 12
|
| 18 | 17 | adantrr 753 |
. . . . . . . . . . 11
|
| 19 | 18 | adantr 481 |
. . . . . . . . . 10
|
| 20 | df-ss 3588 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | sylib 208 |
. . . . . . . . 9
|
| 22 | 14, 21 | eqtr2d 2657 |
. . . . . . . 8
|
| 23 | 5 | adantr 481 |
. . . . . . . . 9
|
| 24 | fpwwe2.3 |
. . . . . . . . . 10
| |
| 25 | 24 | adantlr 751 |
. . . . . . . . 9
|
| 26 | simprl 794 |
. . . . . . . . 9
| |
| 27 | simprr 796 |
. . . . . . . . 9
| |
| 28 | 1, 23, 25, 26, 27 | fpwwe2lem10 9461 |
. . . . . . . 8
|
| 29 | 13, 22, 28 | mpjaodan 827 |
. . . . . . 7
|
| 30 | 29 | ex 450 |
. . . . . 6
|
| 31 | 30 | alrimiv 1855 |
. . . . 5
|
| 32 | 31 | alrimivv 1856 |
. . . 4
|
| 33 | dffun2 5898 |
. . . 4
| |
| 34 | 3, 32, 33 | sylanbrc 698 |
. . 3
|
| 35 | funfn 5918 |
. . 3
| |
| 36 | 34, 35 | sylib 208 |
. 2
|
| 37 | vex 3203 |
. . . . 5
| |
| 38 | 37 | elrn 5366 |
. . . 4
|
| 39 | 2 | releldmi 5362 |
. . . . . . . . . . . 12
|
| 40 | 39 | adantl 482 |
. . . . . . . . . . 11
|
| 41 | elssuni 4467 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . 10
|
| 43 | fpwwe2.4 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | syl6sseqr 3652 |
. . . . . . . . 9
|
| 45 | xpss12 5225 |
. . . . . . . . 9
| |
| 46 | 44, 44, 45 | syl2anc 693 |
. . . . . . . 8
|
| 47 | 17, 46 | sstrd 3613 |
. . . . . . 7
|
| 48 | 47 | ex 450 |
. . . . . 6
|
| 49 | selpw 4165 |
. . . . . 6
| |
| 50 | 48, 49 | syl6ibr 242 |
. . . . 5
|
| 51 | 50 | exlimdv 1861 |
. . . 4
|
| 52 | 38, 51 | syl5bi 232 |
. . 3
|
| 53 | 52 | ssrdv 3609 |
. 2
|
| 54 | df-f 5892 |
. 2
| |
| 55 | 36, 53, 54 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-wrecs 7407 df-recs 7468 df-oi 8415 |
| This theorem is referenced by: fpwwe2lem13 9464 fpwwe2 9465 |
| Copyright terms: Public domain | W3C validator |