MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpelv Structured version   Visualization version   Unicode version

Theorem genpelv 9822
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpelv  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( A F B )  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) ) )
Distinct variable groups:    x, y,
z, g, h, A   
x, B, y, z, g, h    x, w, v, G, y, z, g, h    g, F    C, g, h
Allowed substitution hints:    A( w, v)    B( w, v)    C( x, y, z, w, v)    F( x, y, z, w, v, h)

Proof of Theorem genpelv
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
2 genp.2 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpv 9821 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  { f  |  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) } )
43eleq2d 2687 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( A F B )  <-> 
C  e.  { f  |  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) } ) )
5 id 22 . . . . . 6  |-  ( C  =  ( g G h )  ->  C  =  ( g G h ) )
6 ovex 6678 . . . . . 6  |-  ( g G h )  e. 
_V
75, 6syl6eqel 2709 . . . . 5  |-  ( C  =  ( g G h )  ->  C  e.  _V )
87rexlimivw 3029 . . . 4  |-  ( E. h  e.  B  C  =  ( g G h )  ->  C  e.  _V )
98rexlimivw 3029 . . 3  |-  ( E. g  e.  A  E. h  e.  B  C  =  ( g G h )  ->  C  e.  _V )
10 eqeq1 2626 . . . 4  |-  ( f  =  C  ->  (
f  =  ( g G h )  <->  C  =  ( g G h ) ) )
11102rexbidv 3057 . . 3  |-  ( f  =  C  ->  ( E. g  e.  A  E. h  e.  B  f  =  ( g G h )  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) ) )
129, 11elab3 3358 . 2  |-  ( C  e.  { f  |  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) }  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) )
134, 12syl6bb 276 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( A F B )  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200  (class class class)co 6650    |-> cmpt2 6652   Q.cnq 9674   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-ni 9694  df-nq 9734  df-np 9803
This theorem is referenced by:  genpprecl  9823  genpss  9826  genpnnp  9827  genpcd  9828  genpnmax  9829  genpass  9831  distrlem1pr  9847  distrlem5pr  9849  1idpr  9851  ltexprlem6  9863  reclem3pr  9871  reclem4pr  9872
  Copyright terms: Public domain W3C validator