| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringgrp | Structured version Visualization version Unicode version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | eqid 2622 |
. . 3
| |
| 4 | eqid 2622 |
. . 3
| |
| 5 | 1, 2, 3, 4 | isring 18551 |
. 2
|
| 6 | 5 | simp1bi 1076 |
1
|
| Copyright terms: Public domain | W3C validator |