MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadomg Structured version   Visualization version   Unicode version

Theorem imadomg 9356
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of [TakeutiZaring] p. 92. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
imadomg  |-  ( A  e.  B  ->  ( Fun  F  ->  ( F " A )  ~<_  A ) )

Proof of Theorem imadomg
StepHypRef Expression
1 df-ima 5127 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
2 resfunexg 6479 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F  |`  A )  e. 
_V )
3 dmexg 7097 . . . . . 6  |-  ( ( F  |`  A )  e.  _V  ->  dom  ( F  |`  A )  e.  _V )
42, 3syl 17 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  dom  ( F  |`  A )  e.  _V )
5 funres 5929 . . . . . . 7  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
6 funforn 6122 . . . . . . 7  |-  ( Fun  ( F  |`  A )  <-> 
( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A ) )
75, 6sylib 208 . . . . . 6  |-  ( Fun 
F  ->  ( F  |`  A ) : dom  ( F  |`  A )
-onto->
ran  ( F  |`  A ) )
87adantr 481 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A ) )
9 fodomg 9345 . . . . 5  |-  ( dom  ( F  |`  A )  e.  _V  ->  (
( F  |`  A ) : dom  ( F  |`  A ) -onto-> ran  ( F  |`  A )  ->  ran  ( F  |`  A )  ~<_  dom  ( F  |`  A ) ) )
104, 8, 9sylc 65 . . . 4  |-  ( ( Fun  F  /\  A  e.  B )  ->  ran  ( F  |`  A )  ~<_  dom  ( F  |`  A ) )
111, 10syl5eqbr 4688 . . 3  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  ~<_  dom  ( F  |`  A ) )
1211expcom 451 . 2  |-  ( A  e.  B  ->  ( Fun  F  ->  ( F " A )  ~<_  dom  ( F  |`  A ) ) )
13 dmres 5419 . . . . . 6  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
14 inss1 3833 . . . . . 6  |-  ( A  i^i  dom  F )  C_  A
1513, 14eqsstri 3635 . . . . 5  |-  dom  ( F  |`  A )  C_  A
16 ssdomg 8001 . . . . 5  |-  ( A  e.  B  ->  ( dom  ( F  |`  A ) 
C_  A  ->  dom  ( F  |`  A )  ~<_  A ) )
1715, 16mpi 20 . . . 4  |-  ( A  e.  B  ->  dom  ( F  |`  A )  ~<_  A )
18 domtr 8009 . . . 4  |-  ( ( ( F " A
)  ~<_  dom  ( F  |`  A )  /\  dom  ( F  |`  A )  ~<_  A )  ->  ( F " A )  ~<_  A )
1917, 18sylan2 491 . . 3  |-  ( ( ( F " A
)  ~<_  dom  ( F  |`  A )  /\  A  e.  B )  ->  ( F " A )  ~<_  A )
2019expcom 451 . 2  |-  ( A  e.  B  ->  (
( F " A
)  ~<_  dom  ( F  |`  A )  ->  ( F " A )  ~<_  A ) )
2112, 20syld 47 1  |-  ( A  e.  B  ->  ( Fun  F  ->  ( F " A )  ~<_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -onto->wfo 5886    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-card 8765  df-acn 8768  df-ac 8939
This theorem is referenced by:  fimact  9357  uniimadom  9366  hausmapdom  21303
  Copyright terms: Public domain W3C validator