MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausmapdom Structured version   Visualization version   Unicode version

Theorem hausmapdom 21303
Description: If  X is a first-countable Hausdorff space, then the cardinality of the closure of a set  A is bounded by  NN to the power  A. In particular, a first-countable Hausdorff space with a dense subset  A has cardinality at most  A ^ NN, and a separable first-countable Hausdorff space has cardinality at most  ~P NN. (Compare hauspwpwdom 21792 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1  |-  X  = 
U. J
Assertion
Ref Expression
hausmapdom  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  ~<_  ( A  ^m  NN ) )

Proof of Theorem hausmapdom
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauspwdom.1 . . . . . . . 8  |-  X  = 
U. J
211stcelcls 21264 . . . . . . 7  |-  ( ( J  e.  1stc  /\  A  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  E. f
( f : NN --> A  /\  f ( ~~> t `  J ) x ) ) )
323adant1 1079 . . . . . 6  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  E. f ( f : NN --> A  /\  f
( ~~> t `  J
) x ) ) )
4 uniexg 6955 . . . . . . . . . . . 12  |-  ( J  e.  Haus  ->  U. J  e.  _V )
543ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  U. J  e. 
_V )
61, 5syl5eqel 2705 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  X  e.  _V )
7 simp3 1063 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  A  C_  X
)
86, 7ssexd 4805 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  A  e.  _V )
9 nnex 11026 . . . . . . . . 9  |-  NN  e.  _V
10 elmapg 7870 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  NN  e.  _V )  -> 
( f  e.  ( A  ^m  NN )  <-> 
f : NN --> A ) )
118, 9, 10sylancl 694 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( f  e.  ( A  ^m  NN ) 
<->  f : NN --> A ) )
1211anbi1d 741 . . . . . . 7  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( (
f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x )  <-> 
( f : NN --> A  /\  f ( ~~> t `  J ) x ) ) )
1312exbidv 1850 . . . . . 6  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( E. f ( f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x )  <->  E. f ( f : NN --> A  /\  f
( ~~> t `  J
) x ) ) )
143, 13bitr4d 271 . . . . 5  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  E. f ( f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x ) ) )
15 df-rex 2918 . . . . 5  |-  ( E. f  e.  ( A  ^m  NN ) f ( ~~> t `  J
) x  <->  E. f
( f  e.  ( A  ^m  NN )  /\  f ( ~~> t `  J ) x ) )
1614, 15syl6bbr 278 . . . 4  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  E. f  e.  ( A  ^m  NN ) f ( ~~> t `  J
) x ) )
17 vex 3203 . . . . 5  |-  x  e. 
_V
1817elima 5471 . . . 4  |-  ( x  e.  ( ( ~~> t `  J ) " ( A  ^m  NN ) )  <->  E. f  e.  ( A  ^m  NN ) f ( ~~> t `  J
) x )
1916, 18syl6bbr 278 . . 3  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  x  e.  ( ( ~~> t `  J ) " ( A  ^m  NN ) ) ) )
2019eqrdv 2620 . 2  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  =  ( ( ~~> t `  J
) " ( A  ^m  NN ) ) )
21 ovex 6678 . . 3  |-  ( A  ^m  NN )  e. 
_V
22 lmfun 21185 . . . 4  |-  ( J  e.  Haus  ->  Fun  ( ~~> t `  J )
)
23223ad2ant1 1082 . . 3  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  Fun  ( ~~> t `  J ) )
24 imadomg 9356 . . 3  |-  ( ( A  ^m  NN )  e.  _V  ->  ( Fun  ( ~~> t `  J
)  ->  ( ( ~~> t `  J ) " ( A  ^m  NN ) )  ~<_  ( A  ^m  NN ) ) )
2521, 23, 24mpsyl 68 . 2  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( ~~> t `  J ) " ( A  ^m  NN ) )  ~<_  ( A  ^m  NN ) )
2620, 25eqbrtrd 4675 1  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  ~<_  ( A  ^m  NN ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   U.cuni 4436   class class class wbr 4653   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    ~<_ cdom 7953   NNcn 11020   clsccl 20822   ~~> tclm 21030   Hauscha 21112   1stcc1stc 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033  df-haus 21119  df-1stc 21242
This theorem is referenced by:  hauspwdom  21304
  Copyright terms: Public domain W3C validator