MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inelfi Structured version   Visualization version   Unicode version

Theorem inelfi 8324
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.)
Assertion
Ref Expression
inelfi  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  ( fi
`  X ) )

Proof of Theorem inelfi
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 prelpwi 4915 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  { A ,  B }  e.  ~P X
)
213adant1 1079 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  { A ,  B }  e.  ~P X
)
3 prfi 8235 . . . . 5  |-  { A ,  B }  e.  Fin
43a1i 11 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  { A ,  B }  e.  Fin )
52, 4elind 3798 . . 3  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  { A ,  B }  e.  ( ~P X  i^i  Fin ) )
6 intprg 4511 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
763adant1 1079 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
87eqcomd 2628 . . 3  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A  i^i  B
)  =  |^| { A ,  B } )
9 inteq 4478 . . . . 5  |-  ( p  =  { A ,  B }  ->  |^| p  =  |^| { A ,  B } )
109eqeq2d 2632 . . . 4  |-  ( p  =  { A ,  B }  ->  ( ( A  i^i  B )  =  |^| p  <->  ( A  i^i  B )  =  |^| { A ,  B }
) )
1110rspcev 3309 . . 3  |-  ( ( { A ,  B }  e.  ( ~P X  i^i  Fin )  /\  ( A  i^i  B )  =  |^| { A ,  B } )  ->  E. p  e.  ( ~P X  i^i  Fin )
( A  i^i  B
)  =  |^| p
)
125, 8, 11syl2anc 693 . 2  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  E. p  e.  ( ~P X  i^i  Fin ) ( A  i^i  B )  =  |^| p
)
13 inex1g 4801 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
14133ad2ant2 1083 . . 3  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  _V )
15 simp1 1061 . . 3  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  X  e.  V )
16 elfi 8319 . . 3  |-  ( ( ( A  i^i  B
)  e.  _V  /\  X  e.  V )  ->  ( ( A  i^i  B )  e.  ( fi
`  X )  <->  E. p  e.  ( ~P X  i^i  Fin ) ( A  i^i  B )  =  |^| p
) )
1714, 15, 16syl2anc 693 . 2  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( ( A  i^i  B )  e.  ( fi
`  X )  <->  E. p  e.  ( ~P X  i^i  Fin ) ( A  i^i  B )  =  |^| p
) )
1812, 17mpbird 247 1  |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  ( fi
`  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573   ~Pcpw 4158   {cpr 4179   |^|cint 4475   ` cfv 5888   Fincfn 7955   ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317
This theorem is referenced by:  neiptoptop  20935  sigapildsyslem  30224
  Copyright terms: Public domain W3C validator