Proof of Theorem sigapildsyslem
Step | Hyp | Ref
| Expression |
1 | | iuneq1 4534 |
. . . . . . 7


   |
2 | | 0iun 4577 |
. . . . . . 7
  |
3 | 1, 2 | syl6eq 2672 |
. . . . . 6


  |
4 | 3 | difeq2d 3728 |
. . . . 5

       |
5 | | dif0 3950 |
. . . . 5
   |
6 | 4, 5 | syl6eq 2672 |
. . . 4

     |
7 | 6 | adantl 482 |
. . 3
 

     |
8 | | sigapildsyslem.2 |
. . . 4
   |
9 | 8 | adantr 481 |
. . 3
 

  |
10 | 7, 9 | eqeltrd 2701 |
. 2
 

     |
11 | | iindif2 4589 |
. . . 4

    
   |
12 | 11 | adantl 482 |
. . 3
 

    
   |
13 | | sigapildsyslem.1 |
. . . . . . . 8
     |
14 | 13 | adantr 481 |
. . . . . . 7
 


   |
15 | 14 | elin1d 3802 |
. . . . . 6
 

  |
16 | | dynkin.p |
. . . . . . 7
  
      |
17 | 16 | ispisys 30215 |
. . . . . 6

          |
18 | 15, 17 | sylib 208 |
. . . . 5
 

          |
19 | 18 | simprd 479 |
. . . 4
 

      |
20 | | sigapildsyslem.n |
. . . . . . 7
   |
21 | | nfv 1843 |
. . . . . . 7
  |
22 | 20, 21 | nfan 1828 |
. . . . . 6
  
  |
23 | 18 | simpld 475 |
. . . . . . . . . . . . 13
 

    |
24 | 23 | elpwid 4170 |
. . . . . . . . . . . 12
 

   |
25 | 8 | adantr 481 |
. . . . . . . . . . . 12
 

  |
26 | 24, 25 | sseldd 3604 |
. . . . . . . . . . 11
 

   |
27 | 26 | elpwid 4170 |
. . . . . . . . . 10
 

  |
28 | 27 | adantr 481 |
. . . . . . . . 9
       |
29 | | difin2 3890 |
. . . . . . . . 9
         |
30 | 28, 29 | syl 17 |
. . . . . . . 8
             |
31 | 19 | adantr 481 |
. . . . . . . . 9
           |
32 | 14 | adantr 481 |
. . . . . . . . . 10
         |
33 | 14 | elin2d 3803 |
. . . . . . . . . . . . . . 15
 

  |
34 | | dynkin.l |
. . . . . . . . . . . . . . . 16
  
 
     
Disj  
    |
35 | 34 | isldsys 30219 |
. . . . . . . . . . . . . . 15

       
   Disj 
      |
36 | 33, 35 | sylib 208 |
. . . . . . . . . . . . . 14
 

       
   Disj 
      |
37 | 36 | simprd 479 |
. . . . . . . . . . . . 13
 

       
Disj  
    |
38 | 37 | simp2d 1074 |
. . . . . . . . . . . 12
 


    |
39 | 38 | adantr 481 |
. . . . . . . . . . 11
     
    |
40 | | sigapildsyslem.4 |
. . . . . . . . . . . . 13
 
   |
41 | 40 | adantlr 751 |
. . . . . . . . . . . 12
       |
42 | | nfv 1843 |
. . . . . . . . . . . . 13
     |
43 | | difeq2 3722 |
. . . . . . . . . . . . . 14
       |
44 | 43 | eleq1d 2686 |
. . . . . . . . . . . . 13
   
     |
45 | 42, 44 | rspc 3303 |
. . . . . . . . . . . 12
  
       |
46 | 41, 45 | syl 17 |
. . . . . . . . . . 11
      
       |
47 | 39, 46 | mpd 15 |
. . . . . . . . . 10
         |
48 | 25 | adantr 481 |
. . . . . . . . . 10
       |
49 | | inelfi 8324 |
. . . . . . . . . 10
    
    
       |
50 | 32, 47, 48, 49 | syl3anc 1326 |
. . . . . . . . 9
       
       |
51 | 31, 50 | sseldd 3604 |
. . . . . . . 8
       
   |
52 | 30, 51 | eqeltrd 2701 |
. . . . . . 7
         |
53 | 52 | ex 450 |
. . . . . 6
 


     |
54 | 22, 53 | ralrimi 2957 |
. . . . 5
 


    |
55 | | simpr 477 |
. . . . 5
 

  |
56 | | sigapildsyslem.3 |
. . . . . 6
   |
57 | 56 | adantr 481 |
. . . . 5
 

  |
58 | | vex 3203 |
. . . . . 6
 |
59 | | iinfi 8323 |
. . . . . 6
    
            |
60 | 58, 59 | mpan 706 |
. . . . 5
   
  
        |
61 | 54, 55, 57, 60 | syl3anc 1326 |
. . . 4
 

         |
62 | 19, 61 | sseldd 3604 |
. . 3
 

     |
63 | 12, 62 | eqeltrrd 2702 |
. 2
 

     |
64 | 10, 63 | pm2.61dane 2881 |
1
  
   |