Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem2 Structured version   Visualization version   Unicode version

Theorem infleinflem2 39587
Description: Lemma for infleinf 39588, when inf ( B ,  RR* ,  <  )  = -oo. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem2.a  |-  ( ph  ->  A  C_  RR* )
infleinflem2.b  |-  ( ph  ->  B  C_  RR* )
infleinflem2.r  |-  ( ph  ->  R  e.  RR )
infleinflem2.x  |-  ( ph  ->  X  e.  B )
infleinflem2.t  |-  ( ph  ->  X  <  ( R  -  2 ) )
infleinflem2.z  |-  ( ph  ->  Z  e.  A )
infleinflem2.l  |-  ( ph  ->  Z  <_  ( X +e 1 ) )
Assertion
Ref Expression
infleinflem2  |-  ( ph  ->  Z  <  R )

Proof of Theorem infleinflem2
StepHypRef Expression
1 infleinflem2.r . . . 4  |-  ( ph  ->  R  e.  RR )
21adantr 481 . . 3  |-  ( (
ph  /\  Z  = -oo )  ->  R  e.  RR )
3 simpr 477 . . 3  |-  ( (
ph  /\  Z  = -oo )  ->  Z  = -oo )
4 simpr 477 . . . 4  |-  ( ( R  e.  RR  /\  Z  = -oo )  ->  Z  = -oo )
5 mnflt 11957 . . . . 5  |-  ( R  e.  RR  -> -oo  <  R )
65adantr 481 . . . 4  |-  ( ( R  e.  RR  /\  Z  = -oo )  -> -oo  <  R )
74, 6eqbrtrd 4675 . . 3  |-  ( ( R  e.  RR  /\  Z  = -oo )  ->  Z  <  R )
82, 3, 7syl2anc 693 . 2  |-  ( (
ph  /\  Z  = -oo )  ->  Z  < 
R )
9 simpl 473 . . 3  |-  ( (
ph  /\  -.  Z  = -oo )  ->  ph )
10 neqne 2802 . . . 4  |-  ( -.  Z  = -oo  ->  Z  =/= -oo )
1110adantl 482 . . 3  |-  ( (
ph  /\  -.  Z  = -oo )  ->  Z  =/= -oo )
121adantr 481 . . . . 5  |-  ( (
ph  /\  Z  =/= -oo )  ->  R  e.  RR )
13 id 22 . . . . . . . 8  |-  ( ph  ->  ph )
14 infleinflem2.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
15 infleinflem2.b . . . . . . . . 9  |-  ( ph  ->  B  C_  RR* )
1615sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  X  e.  B )  ->  X  e.  RR* )
1713, 14, 16syl2anc 693 . . . . . . 7  |-  ( ph  ->  X  e.  RR* )
1817adantr 481 . . . . . 6  |-  ( (
ph  /\  Z  =/= -oo )  ->  X  e.  RR* )
19 infleinflem2.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  A )
20 infleinflem2.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  RR* )
2120sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  Z  e.  A )  ->  Z  e.  RR* )
2213, 19, 21syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR* )
2322adantr 481 . . . . . . . 8  |-  ( (
ph  /\  Z  =/= -oo )  ->  Z  e.  RR* )
24 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  Z  =/= -oo )  ->  Z  =/= -oo )
25 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
2625a1i 11 . . . . . . . . . 10  |-  ( ph  -> +oo  e.  RR* )
27 peano2rem 10348 . . . . . . . . . . . . 13  |-  ( R  e.  RR  ->  ( R  -  1 )  e.  RR )
2827rexrd 10089 . . . . . . . . . . . 12  |-  ( R  e.  RR  ->  ( R  -  1 )  e.  RR* )
291, 28syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( R  -  1 )  e.  RR* )
3015, 14sseldd 3604 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  RR* )
31 id 22 . . . . . . . . . . . . . 14  |-  ( X  e.  RR*  ->  X  e. 
RR* )
32 1re 10039 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
3332rexri 10097 . . . . . . . . . . . . . . 15  |-  1  e.  RR*
3433a1i 11 . . . . . . . . . . . . . 14  |-  ( X  e.  RR*  ->  1  e. 
RR* )
3531, 34xaddcld 12131 . . . . . . . . . . . . 13  |-  ( X  e.  RR*  ->  ( X +e 1 )  e.  RR* )
3630, 35syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( X +e 1 )  e.  RR* )
37 infleinflem2.l . . . . . . . . . . . 12  |-  ( ph  ->  Z  <_  ( X +e 1 ) )
38 infleinflem2.t . . . . . . . . . . . . 13  |-  ( ph  ->  X  <  ( R  -  2 ) )
39 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( X  = -oo  ->  ( X +e 1 )  =  ( -oo +e 1 ) )
40 renepnf 10087 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  e.  RR  ->  1  =/= +oo )
4132, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  1  =/= +oo
42 xaddmnf2 12060 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR*  /\  1  =/= +oo )  ->  ( -oo +e 1 )  = -oo )
4333, 41, 42mp2an 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( -oo +e 1 )  = -oo
4443a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( X  = -oo  ->  ( -oo +e 1 )  = -oo )
4539, 44eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( X  = -oo  ->  ( X +e 1 )  = -oo )
4645adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR  /\  X  = -oo )  ->  ( X +e 1 )  = -oo )
4727mnfltd 11958 . . . . . . . . . . . . . . . . . 18  |-  ( R  e.  RR  -> -oo  <  ( R  -  1 ) )
4847adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR  /\  X  = -oo )  -> -oo  <  ( R  -  1 ) )
4946, 48eqbrtrd 4675 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RR  /\  X  = -oo )  ->  ( X +e 1 )  <  ( R  -  1 ) )
5049adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RR  /\  X  e.  RR* )  /\  X  = -oo )  ->  ( X +e 1 )  < 
( R  -  1 ) )
51503adantl3 1219 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  X  = -oo )  ->  ( X +e 1 )  <  ( R  - 
1 ) )
52 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  -.  X  = -oo )  ->  ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) ) )
53 simpl2 1065 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  -.  X  = -oo )  ->  X  e.  RR* )
54 neqne 2802 . . . . . . . . . . . . . . . . 17  |-  ( -.  X  = -oo  ->  X  =/= -oo )
5554adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  -.  X  = -oo )  ->  X  =/= -oo )
56 simp2 1062 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  X  e.  RR* )
5725a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  -> +oo  e.  RR* )
58 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR  ->  R  e.  RR )
59 2re 11090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  RR
6059a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  RR  ->  2  e.  RR )
6158, 60resubcld 10458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR  ->  ( R  -  2 )  e.  RR )
6261rexrd 10089 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  RR  ->  ( R  -  2 )  e.  RR* )
63623ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  ( R  -  2 )  e.  RR* )
64 simp3 1063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  X  <  ( R  -  2 ) )
6561ltpnfd 11955 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  RR  ->  ( R  -  2 )  < +oo )
66653ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  ( R  -  2 )  < +oo )
6756, 63, 57, 64, 66xrlttrd 11990 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  X  < +oo )
6856, 57, 67xrltned 39573 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  X  =/= +oo )
6968adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  -.  X  = -oo )  ->  X  =/= +oo )
7053, 55, 69xrred 39581 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  -.  X  = -oo )  ->  X  e.  RR )
71 id 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X  e.  RR  ->  X  e.  RR )
7271ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  X  e.  RR )
7361ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  ( R  -  2 )  e.  RR )
74 1red 10055 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X  e.  RR  ->  1  e.  RR )
7572, 74syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  1  e.  RR )
76 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  X  <  ( R  -  2 ) )
7772, 73, 75, 76ltadd1dd 10638 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  ( X  +  1 )  < 
( ( R  - 
2 )  +  1 ) )
78 recn 10026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  RR  ->  R  e.  CC )
79 id 22 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  CC  ->  R  e.  CC )
80 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  CC  ->  2  e.  CC )
81 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  e.  CC  ->  1  e.  CC )
8279, 80, 81subsubd 10420 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  CC  ->  ( R  -  ( 2  -  1 ) )  =  ( ( R  -  2 )  +  1 ) )
83 2m1e1 11135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2  -  1 )  =  1
8483oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R  -  ( 2  -  1 ) )  =  ( R  -  1 )
8584a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  CC  ->  ( R  -  ( 2  -  1 ) )  =  ( R  - 
1 ) )
8682, 85eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  CC  ->  (
( R  -  2 )  +  1 )  =  ( R  - 
1 ) )
8778, 86syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  RR  ->  (
( R  -  2 )  +  1 )  =  ( R  - 
1 ) )
8887ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  ( ( R  -  2 )  +  1 )  =  ( R  -  1 ) )
8977, 88breqtrd 4679 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  ( X  +  1 )  < 
( R  -  1 ) )
9071, 74rexaddd 12065 . . . . . . . . . . . . . . . . . . . 20  |-  ( X  e.  RR  ->  ( X +e 1 )  =  ( X  + 
1 ) )
9190breq1d 4663 . . . . . . . . . . . . . . . . . . 19  |-  ( X  e.  RR  ->  (
( X +e 1 )  <  ( R  -  1 )  <-> 
( X  +  1 )  <  ( R  -  1 ) ) )
9291ad2antlr 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  ( ( X +e 1 )  <  ( R  - 
1 )  <->  ( X  +  1 )  < 
( R  -  1 ) ) )
9389, 92mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  ->  ( X +e 1 )  <  ( R  - 
1 ) )
9493an32s 846 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RR  /\  X  <  ( R  -  2 ) )  /\  X  e.  RR )  ->  ( X +e 1 )  < 
( R  -  1 ) )
95943adantl2 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  X  e.  RR )  ->  ( X +e 1 )  <  ( R  - 
1 ) )
9652, 70, 95syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  /\  -.  X  = -oo )  ->  ( X +e 1 )  <  ( R  -  1 ) )
9751, 96pm2.61dan 832 . . . . . . . . . . . . 13  |-  ( ( R  e.  RR  /\  X  e.  RR*  /\  X  <  ( R  -  2 ) )  ->  ( X +e 1 )  <  ( R  - 
1 ) )
981, 30, 38, 97syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( X +e 1 )  <  ( R  -  1 ) )
9922, 36, 29, 37, 98xrlelttrd 11991 . . . . . . . . . . 11  |-  ( ph  ->  Z  <  ( R  -  1 ) )
10027ltpnfd 11955 . . . . . . . . . . . 12  |-  ( R  e.  RR  ->  ( R  -  1 )  < +oo )
1011, 100syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( R  -  1 )  < +oo )
10222, 29, 26, 99, 101xrlttrd 11990 . . . . . . . . . 10  |-  ( ph  ->  Z  < +oo )
10322, 26, 102xrltned 39573 . . . . . . . . 9  |-  ( ph  ->  Z  =/= +oo )
104103adantr 481 . . . . . . . 8  |-  ( (
ph  /\  Z  =/= -oo )  ->  Z  =/= +oo )
10523, 24, 104xrred 39581 . . . . . . 7  |-  ( (
ph  /\  Z  =/= -oo )  ->  Z  e.  RR )
10637adantr 481 . . . . . . 7  |-  ( (
ph  /\  Z  =/= -oo )  ->  Z  <_  ( X +e 1 ) )
107 simpl3 1066 . . . . . . . . 9  |-  ( ( ( Z  e.  RR  /\  X  e.  RR*  /\  Z  <_  ( X +e 1 ) )  /\  X  = -oo )  ->  Z  <_  ( X +e 1 ) )
10845adantl 482 . . . . . . . . . . . 12  |-  ( ( Z  e.  RR  /\  X  = -oo )  ->  ( X +e 1 )  = -oo )
109 mnflt 11957 . . . . . . . . . . . . 13  |-  ( Z  e.  RR  -> -oo  <  Z )
110109adantr 481 . . . . . . . . . . . 12  |-  ( ( Z  e.  RR  /\  X  = -oo )  -> -oo  <  Z )
111108, 110eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( Z  e.  RR  /\  X  = -oo )  ->  ( X +e 1 )  <  Z
)
112 mnfxr 10096 . . . . . . . . . . . . 13  |- -oo  e.  RR*
113108, 112syl6eqel 2709 . . . . . . . . . . . 12  |-  ( ( Z  e.  RR  /\  X  = -oo )  ->  ( X +e 1 )  e.  RR* )
114 rexr 10085 . . . . . . . . . . . . 13  |-  ( Z  e.  RR  ->  Z  e.  RR* )
115114adantr 481 . . . . . . . . . . . 12  |-  ( ( Z  e.  RR  /\  X  = -oo )  ->  Z  e.  RR* )
116113, 115xrltnled 39579 . . . . . . . . . . 11  |-  ( ( Z  e.  RR  /\  X  = -oo )  ->  ( ( X +e 1 )  < 
Z  <->  -.  Z  <_  ( X +e 1 ) ) )
117111, 116mpbid 222 . . . . . . . . . 10  |-  ( ( Z  e.  RR  /\  X  = -oo )  ->  -.  Z  <_  ( X +e 1 ) )
1181173ad2antl1 1223 . . . . . . . . 9  |-  ( ( ( Z  e.  RR  /\  X  e.  RR*  /\  Z  <_  ( X +e 1 ) )  /\  X  = -oo )  ->  -.  Z  <_  ( X +e 1 ) )
119107, 118pm2.65da 600 . . . . . . . 8  |-  ( ( Z  e.  RR  /\  X  e.  RR*  /\  Z  <_  ( X +e 1 ) )  ->  -.  X  = -oo )
120119neqned 2801 . . . . . . 7  |-  ( ( Z  e.  RR  /\  X  e.  RR*  /\  Z  <_  ( X +e 1 ) )  ->  X  =/= -oo )
121105, 18, 106, 120syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Z  =/= -oo )  ->  X  =/= -oo )
1221, 17, 38, 68syl3anc 1326 . . . . . . 7  |-  ( ph  ->  X  =/= +oo )
123122adantr 481 . . . . . 6  |-  ( (
ph  /\  Z  =/= -oo )  ->  X  =/= +oo )
12418, 121, 123xrred 39581 . . . . 5  |-  ( (
ph  /\  Z  =/= -oo )  ->  X  e.  RR )
12538adantr 481 . . . . 5  |-  ( (
ph  /\  Z  =/= -oo )  ->  X  <  ( R  -  2 ) )
12612, 124, 125jca31 557 . . . 4  |-  ( (
ph  /\  Z  =/= -oo )  ->  ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) ) )
127 simplr 792 . . . . 5  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  ->  Z  e.  RR )
128 simp-4r 807 . . . . . 6  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  ->  X  e.  RR )
12971, 74readdcld 10069 . . . . . . 7  |-  ( X  e.  RR  ->  ( X  +  1 )  e.  RR )
13090, 129eqeltrd 2701 . . . . . 6  |-  ( X  e.  RR  ->  ( X +e 1 )  e.  RR )
131128, 130syl 17 . . . . 5  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  -> 
( X +e 1 )  e.  RR )
13258ad4antr 768 . . . . 5  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  ->  R  e.  RR )
133 simpr 477 . . . . 5  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  ->  Z  <_  ( X +e 1 ) )
134130ad3antlr 767 . . . . . . 7  |-  ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  ->  ( X +e 1 )  e.  RR )
13527ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  ->  ( R  -  1 )  e.  RR )
13658ad3antrrr 766 . . . . . . 7  |-  ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  ->  R  e.  RR )
13793adantr 481 . . . . . . 7  |-  ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  ->  ( X +e 1 )  <  ( R  - 
1 ) )
138136ltm1d 10956 . . . . . . 7  |-  ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  ->  ( R  -  1 )  <  R )
139134, 135, 136, 137, 138lttrd 10198 . . . . . 6  |-  ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  ->  ( X +e 1 )  <  R )
140139adantr 481 . . . . 5  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  -> 
( X +e 1 )  <  R
)
141127, 131, 132, 133, 140lelttrd 10195 . . . 4  |-  ( ( ( ( ( R  e.  RR  /\  X  e.  RR )  /\  X  <  ( R  -  2 ) )  /\  Z  e.  RR )  /\  Z  <_  ( X +e 1 ) )  ->  Z  <  R )
142126, 105, 106, 141syl21anc 1325 . . 3  |-  ( (
ph  /\  Z  =/= -oo )  ->  Z  <  R )
1439, 11, 142syl2anc 693 . 2  |-  ( (
ph  /\  -.  Z  = -oo )  ->  Z  <  R )
1448, 143pm2.61dan 832 1  |-  ( ph  ->  Z  <  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-2 11079  df-xadd 11947
This theorem is referenced by:  infleinf  39588
  Copyright terms: Public domain W3C validator