| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infleinflem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for infleinf 39588, case |
| Ref | Expression |
|---|---|
| infleinflem1.a |
|
| infleinflem1.b |
|
| infleinflem1.w |
|
| infleinflem1.x |
|
| infleinflem1.i |
|
| infleinflem1.z |
|
| infleinflem1.l |
|
| Ref | Expression |
|---|---|
| infleinflem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infleinflem1.a |
. . . 4
| |
| 2 | infxrcl 12163 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | id 22 |
. . 3
| |
| 5 | 3, 4 | syl 17 |
. 2
|
| 6 | infleinflem1.z |
. . 3
| |
| 7 | 1, 6 | sseldd 3604 |
. 2
|
| 8 | infleinflem1.b |
. . . 4
| |
| 9 | infxrcl 12163 |
. . . 4
| |
| 10 | 8, 9 | syl 17 |
. . 3
|
| 11 | infleinflem1.w |
. . . 4
| |
| 12 | rpxr 11840 |
. . . 4
| |
| 13 | 11, 12 | syl 17 |
. . 3
|
| 14 | 10, 13 | xaddcld 12131 |
. 2
|
| 15 | infxrlb 12164 |
. . 3
| |
| 16 | 1, 6, 15 | syl2anc 693 |
. 2
|
| 17 | infleinflem1.x |
. . . . 5
| |
| 18 | 8 | sselda 3603 |
. . . . 5
|
| 19 | 17, 18 | mpdan 702 |
. . . 4
|
| 20 | 11 | rpred 11872 |
. . . . . 6
|
| 21 | 20 | rehalfcld 11279 |
. . . . 5
|
| 22 | 21 | rexrd 10089 |
. . . 4
|
| 23 | 19, 22 | xaddcld 12131 |
. . 3
|
| 24 | infleinflem1.l |
. . 3
| |
| 25 | pnfge 11964 |
. . . . . . 7
| |
| 26 | 23, 25 | syl 17 |
. . . . . 6
|
| 27 | 26 | adantr 481 |
. . . . 5
|
| 28 | oveq1 6657 |
. . . . . . 7
| |
| 29 | 28 | adantl 482 |
. . . . . 6
|
| 30 | rpre 11839 |
. . . . . . . . . 10
| |
| 31 | renemnf 10088 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | syl 17 |
. . . . . . . . 9
|
| 33 | xaddpnf2 12058 |
. . . . . . . . 9
| |
| 34 | 12, 32, 33 | syl2anc 693 |
. . . . . . . 8
|
| 35 | 11, 34 | syl 17 |
. . . . . . 7
|
| 36 | 35 | adantr 481 |
. . . . . 6
|
| 37 | 29, 36 | eqtr2d 2657 |
. . . . 5
|
| 38 | 27, 37 | breqtrd 4679 |
. . . 4
|
| 39 | 8, 17 | sseldd 3604 |
. . . . . . 7
|
| 40 | 10, 22 | xaddcld 12131 |
. . . . . . 7
|
| 41 | rphalfcl 11858 |
. . . . . . . . 9
| |
| 42 | 11, 41 | syl 17 |
. . . . . . . 8
|
| 43 | 42 | rpxrd 11873 |
. . . . . . 7
|
| 44 | infleinflem1.i |
. . . . . . 7
| |
| 45 | 39, 40, 43, 44 | xleadd1d 39545 |
. . . . . 6
|
| 46 | 45 | adantr 481 |
. . . . 5
|
| 47 | 10 | adantr 481 |
. . . . . . 7
|
| 48 | neqne 2802 |
. . . . . . . 8
| |
| 49 | 48 | adantl 482 |
. . . . . . 7
|
| 50 | 43 | adantr 481 |
. . . . . . 7
|
| 51 | 11 | adantr 481 |
. . . . . . . 8
|
| 52 | rpre 11839 |
. . . . . . . . 9
| |
| 53 | renepnf 10087 |
. . . . . . . . 9
| |
| 54 | 41, 52, 53 | 3syl 18 |
. . . . . . . 8
|
| 55 | 51, 54 | syl 17 |
. . . . . . 7
|
| 56 | xaddass2 12080 |
. . . . . . 7
| |
| 57 | 47, 49, 50, 55, 50, 55, 56 | syl222anc 1342 |
. . . . . 6
|
| 58 | rehalfcl 11258 |
. . . . . . . . . 10
| |
| 59 | 58, 58 | rexaddd 12065 |
. . . . . . . . 9
|
| 60 | recn 10026 |
. . . . . . . . . 10
| |
| 61 | 2halves 11260 |
. . . . . . . . . 10
| |
| 62 | 60, 61 | syl 17 |
. . . . . . . . 9
|
| 63 | 59, 62 | eqtrd 2656 |
. . . . . . . 8
|
| 64 | 63 | oveq2d 6666 |
. . . . . . 7
|
| 65 | 51, 30, 64 | 3syl 18 |
. . . . . 6
|
| 66 | 57, 65 | eqtrd 2656 |
. . . . 5
|
| 67 | 46, 66 | breqtrd 4679 |
. . . 4
|
| 68 | 38, 67 | pm2.61dan 832 |
. . 3
|
| 69 | 7, 23, 14, 24, 68 | xrletrd 11993 |
. 2
|
| 70 | 5, 7, 14, 16, 69 | xrletrd 11993 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-rp 11833 df-xneg 11946 df-xadd 11947 |
| This theorem is referenced by: infleinf 39588 |
| Copyright terms: Public domain | W3C validator |