HomeHome Metamath Proof Explorer
Theorem List (p. 396 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 39501-39600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreopn 39501 The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  RR  e.  ( topGen `  ran  (,) )
 
Theoremelfzop1le2 39502 A member in a half-open integer interval plus 1 is less or equal than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( K  e.  ( M..^ N )  ->  ( K  +  1 )  <_  N )
 
Theoremsub31 39503 Swap the first and third terms in a double subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  (
 ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( C  -  ( B  -  A ) ) )
 
Theoremnnne1ge2 39504 A positive integer which is not 1 is greater than or equal to 2. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  (
 ( N  e.  NN  /\  N  =/=  1 ) 
 ->  2  <_  N )
 
Theoremlefldiveq 39505 A closed enough, smaller real  C has the same floor of  A when both are divided by  B. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  ( ( A  -  ( A  mod  B ) ) [,] A ) )   =>    |-  ( ph  ->  ( |_ `  ( A  /  B ) )  =  ( |_ `  ( C  /  B ) ) )
 
Theoremnegsubdi3d 39506 Distribution of negative over subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  -u ( A  -  B )  =  ( -u A  -  -u B ) )
 
Theoremltdiv2dd 39507 Division of a positive number by both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( C  /  B )  <  ( C  /  A ) )
 
Theoremabsnpncand 39508 Triangular inequality, combined with cancellation law for subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.) TODO (NM): usage (2 times) should be replaced by abs3difd 14199, and absnpncand 39508 should be deleted afterwards.
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  C ) )  <_  ( ( abs `  ( A  -  B ) )  +  ( abs `  ( B  -  C ) ) ) )
 
Theoremabssinbd 39509 Bound for the absolute value of the sine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( A  e.  RR  ->  ( abs `  ( sin `  A ) )  <_ 
 1 )
 
Theoremhalffl 39510 Floor of  ( 1  / 
2 ). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( |_ `  ( 1  / 
 2 ) )  =  0
 
Theoremmonoords 39511* Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M..^ N ) )  ->  ( F `  k )  <  ( F `  ( k  +  1
 ) ) )   &    |-  ( ph  ->  I  e.  ( M ... N ) )   &    |-  ( ph  ->  J  e.  ( M ... N ) )   &    |-  ( ph  ->  I  <  J )   =>    |-  ( ph  ->  ( F `  I )  <  ( F `  J ) )
 
Theoremhashssle 39512 The size of a subset of a finite set is less than the size of the containing set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) TODO (NM): usage (2 times) should be replaced by hashss 13197, and hashssle 39512 should be deleted afterwards.
 |-  (
 ( A  e.  Fin  /\  B  C_  A )  ->  ( # `  B )  <_  ( # `  A ) )
 
Theoremlttri5d 39513 Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  -.  B  <  A )   =>    |-  ( ph  ->  A  <  B )
 
Theoremfzisoeu 39514* A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 13246 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  H  e.  Fin )   &    |-  ( ph  ->  <  Or  H )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  N  =  ( ( # `  H )  +  ( M  -  1 ) )   =>    |-  ( ph  ->  E! f  f  Isom  <  ,  <  ( ( M ... N ) ,  H )
 )
 
Theoremlt3addmuld 39515 If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  D )   &    |-  ( ph  ->  B  <  D )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  C )  <  ( 3  x.  D ) )
 
Theoremabsnpncan2d 39516 Triangular inequality, combined with cancellation law for subtraction (applied twice). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  D ) )  <_  ( ( ( abs `  ( A  -  B ) )  +  ( abs `  ( B  -  C ) ) )  +  ( abs `  ( C  -  D ) ) ) )
 
Theoremfperiodmullem 39517* A function with period T is also periodic with period nonnegative multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  ( ph  ->  T  e.  RR )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  X  e.  RR )   &    |-  ( ( ph  /\  x  e.  RR )  ->  ( F `  ( x  +  T )
 )  =  ( F `
  x ) )   =>    |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `
  X ) )
 
Theoremfperiodmul 39518* A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  ( ph  ->  T  e.  RR )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  X  e.  RR )   &    |-  ( ( ph  /\  x  e.  RR )  ->  ( F `  ( x  +  T )
 )  =  ( F `
  x ) )   =>    |-  ( ph  ->  ( F `  ( X  +  ( N  x.  T ) ) )  =  ( F `
  X ) )
 
Theoremupbdrech 39519* Choice of an upper bound for a non empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  =/=  (/) )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   &    |-  C  =  sup ( { z  |  E. x  e.  A  z  =  B } ,  RR ,  <  )   =>    |-  ( ph  ->  ( C  e.  RR  /\  A. x  e.  A  B  <_  C ) )
 
Theoremlt4addmuld 39520 If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  E  e.  RR )   &    |-  ( ph  ->  A  <  E )   &    |-  ( ph  ->  B  <  E )   &    |-  ( ph  ->  C  <  E )   &    |-  ( ph  ->  D  <  E )   =>    |-  ( ph  ->  ( ( ( A  +  B )  +  C )  +  D )  <  ( 4  x.  E ) )
 
Theoremabsnpncan3d 39521 Triangular inequality, combined with cancellation law for subtraction (applied three times). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  E  e.  CC )   =>    |-  ( ph  ->  ( abs `  ( A  -  E ) )  <_  ( ( ( ( abs `  ( A  -  B ) )  +  ( abs `  ( B  -  C ) ) )  +  ( abs `  ( C  -  D ) ) )  +  ( abs `  ( D  -  E ) ) ) )
 
Theoremupbdrech2 39522* Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  RR )   &    |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )   &    |-  C  =  if ( A  =  (/) ,  0 ,  sup ( {
 z  |  E. x  e.  A  z  =  B } ,  RR ,  <  ) )   =>    |-  ( ph  ->  ( C  e.  RR  /\  A. x  e.  A  B  <_  C ) )
 
Theoremssfiunibd 39523* A finite union of bounded sets is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  z  e.  U. A )  ->  B  e.  RR )   &    |-  (
 ( ph  /\  x  e.  A )  ->  E. y  e.  RR  A. z  e.  x  B  <_  y
 )   &    |-  ( ph  ->  C  C_ 
 U. A )   =>    |-  ( ph  ->  E. w  e.  RR  A. z  e.  C  B  <_  w )
 
Theoremfz1ssfz0 39524 Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  (
 1 ... N )  C_  ( 0 ... N )
 
Theoremfzdifsuc2 39525 Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 12400, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( N  e.  ( ZZ>= `  ( M  -  1
 ) )  ->  ( M ... N )  =  ( ( M ... ( N  +  1
 ) )  \  {
 ( N  +  1 ) } ) )
 
Theoremfzsscn 39526 A finite sequence of integers is a set of complex numbers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( M ... N )  C_  CC
 
Theoremdivcan8d 39527 A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   &    |-  ( ph  ->  B  =/=  0
 )   =>    |-  ( ph  ->  ( B  /  ( A  x.  B ) )  =  ( 1  /  A ) )
 
Theoremdmmcand 39528 Cancellation law for division and multiplication. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B  =/=  0
 )   =>    |-  ( ph  ->  (
 ( A  /  B )  x.  ( B  x.  C ) )  =  ( A  x.  C ) )
 
Theoremfzssre 39529 A finite sequence of integers is a set of real numbers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( M ... N )  C_  RR
 
Theoremelfzelzd 39530 A member of a finite set of sequential integer is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   =>    |-  ( ph  ->  K  e.  ZZ )
 
Theorembccld 39531 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  K  e.  ZZ )   =>    |-  ( ph  ->  ( N  _C  K )  e. 
 NN0 )
 
Theoremleadd12dd 39532 Addition to both sides of 'less than or equal to'. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <_  C )   &    |-  ( ph  ->  B 
 <_  D )   =>    |-  ( ph  ->  ( A  +  B )  <_  ( C  +  D ) )
 
Theoremfzssnn0 39533 A finite set of sequential integers that is a subset of  NN0. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  (
 0 ... N )  C_  NN0
 
Theoremxreqle 39534 Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( A  e.  RR*  /\  A  =  B ) 
 ->  A  <_  B )
 
Theoremxaddid2d 39535  0 is a left identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  (
 0 +e A )  =  A )
 
Theoremxadd0ge 39536 A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  ->  A  <_  ( A +e B ) )
 
Theoremelfzolem1 39537 A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( K  e.  ( M..^ N )  ->  K  <_  ( N  -  1 ) )
 
Theoremxrgtned 39538 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  B  =/=  A )
 
Theoremxrleneltd 39539 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  A  <  B )
 
Theoremxaddcomd 39540 The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A +e B )  =  ( B +e A ) )
 
Theoremsupxrre3 39541* The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  (
 ( A  C_  RR  /\  A  =/=  (/) )  ->  ( sup ( A ,  RR*
 ,  <  )  e.  RR 
 <-> 
 E. x  e.  RR  A. y  e.  A  y 
 <_  x ) )
 
Theoremuzfissfz 39542* For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A 
 C_  Z )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  E. k  e.  Z  A  C_  ( M ... k ) )
 
Theoremxleadd2d 39543 Addition of extended reals preserves the "less than or equal" relation, in the right slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   =>    |-  ( ph  ->  ( C +e A ) 
 <_  ( C +e B ) )
 
Theoremsuprltrp 39544* The supremum of a nonempty bounded set of reals can be approximated from below by elements of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  A  =/= 
 (/) )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )   &    |-  ( ph  ->  X  e.  RR+ )   =>    |-  ( ph  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  X )  < 
 z )
 
Theoremxleadd1d 39545 Addition of extended reals preserves the "less than or equal" relation, in the left slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   =>    |-  ( ph  ->  ( A +e C ) 
 <_  ( B +e C ) )
 
Theoremxreqled 39546 Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremxrgepnfd 39547 An extended real greater or equal to +oo is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  -> +oo  <_  A )   =>    |-  ( ph  ->  A  = +oo )
 
Theoremxrge0nemnfd 39548 A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  (
 0 [,] +oo ) )   =>    |-  ( ph  ->  A  =/= -oo )
 
Theoremsupxrgere 39549* If a real number can be approximated from below by members of a set, then it is smaller or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  RR* )   &    |-  ( ph  ->  B  e.  RR )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  A  ( B  -  x )  <  y )   =>    |-  ( ph  ->  B  <_  sup ( A ,  RR* ,  <  ) )
 
Theoremiuneqfzuzlem 39550* Lemma for iuneqfzuz 39551: here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  Z  =  ( ZZ>= `  N )   =>    |-  ( A. m  e.  Z  U_ n  e.  ( N
 ... m ) A  =  U_ n  e.  ( N ... m ) B  ->  U_ n  e.  Z  A  C_  U_ n  e.  Z  B )
 
Theoremiuneqfzuz 39551* If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  Z  =  ( ZZ>= `  N )   =>    |-  ( A. m  e.  Z  U_ n  e.  ( N
 ... m ) A  =  U_ n  e.  ( N ... m ) B  ->  U_ n  e.  Z  A  =  U_ n  e.  Z  B )
 
Theoremxle2addd 39552 Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  D  e.  RR* )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B 
 <_  D )   =>    |-  ( ph  ->  ( A +e B ) 
 <_  ( C +e D ) )
 
Theoremsupxrgelem 39553* If an extended real number can be approximated from below by members of a set, then it is smaller or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ( ph  /\  x  e.  RR+ )  ->  E. y  e.  A  B  <  ( y +e x ) )   =>    |-  ( ph  ->  B  <_  sup ( A ,  RR* ,  <  ) )
 
Theoremsupxrge 39554* If an extended real number can be approximated from below by members of a set, then it is smaller or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ( ph  /\  x  e.  RR+ )  ->  E. y  e.  A  B  <_  ( y +e x ) )   =>    |-  ( ph  ->  B  <_  sup ( A ,  RR* ,  <  ) )
 
Theoremsuplesup 39555* If any element of  A can be approximated from below by members of  B, then the supremum of  A is smaller or equal to the supremum of  B. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  C_  RR* )   &    |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  B  ( x  -  y )  <  z )   =>    |-  ( ph  ->  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR*
 ,  <  ) )
 
Theoreminfxrglb 39556* The infimum of a set of extended reals is less than an extended real if and only if the set contains a smaller number. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  (
 ( A  C_  RR*  /\  B  e.  RR* )  ->  (inf ( A ,  RR* ,  <  )  <  B  <->  E. x  e.  A  x  <  B ) )
 
Theoremxadd0ge2 39557 A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )   =>    |-  ( ph  ->  A  <_  ( B +e A ) )
 
Theoremnepnfltpnf 39558 An extended real that is not +oo is less than +oo. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  =/= +oo )   &    |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  A  < +oo )
 
Theoremltadd12dd 39559 Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremnemnftgtmnft 39560 An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  (
 ( A  e.  RR*  /\  A  =/= -oo )  -> -oo  <  A )
 
Theoremxrgtso 39561 'Greater than' is a strict ordering on the extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  `'  <  Or  RR*
 
Theoremrpex 39562 The positive reals form a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  RR+  e.  _V
 
Theoremxrge0ge0 39563 A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( A  e.  ( 0 [,] +oo )  ->  0  <_  A )
 
Theoremxrssre 39564 A subset of extended reals that does not contain +oo and -oo is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  -. +oo  e.  A )   &    |-  ( ph  ->  -. -oo  e.  A )   =>    |-  ( ph  ->  A  C_ 
 RR )
 
Theoremssuzfz 39565 A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  A  C_  ( M ... sup ( A ,  RR ,  <  ) ) )
 
Theoremabsfun 39566 The absolute value is a function. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  Fun  abs
 
Theoreminfrpge 39567* The infimum of a non empty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  RR* )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  x  <_  y )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) )
 
Theoremxrlexaddrp 39568* If an extended real number  A can be approximated from above, adding positive reals to  B, then  A is smaller or equal than  B. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ( ph  /\  x  e.  RR+ )  ->  A  <_  ( B +e x ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremsupsubc 39569* The supremum function distributes over subtraction in a sense similar to that in supaddc 10990. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
 |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  A  =/= 
 (/) )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )   &    |-  ( ph  ->  B  e.  RR )   &    |-  C  =  { z  |  E. v  e.  A  z  =  ( v  -  B ) }   =>    |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  B )  =  sup ( C ,  RR ,  <  ) )
 
Theoremxralrple2 39570* Show that  A is less than  B by showing that there is no positive bound on the difference. A variant on xralrple 12036. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
 |-  F/ x ph   &    |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  ( 0 [,) +oo ) )   =>    |-  ( ph  ->  ( A  <_  B  <->  A. x  e.  RR+  A 
 <_  ( ( 1  +  x )  x.  B ) ) )
 
Theoremnnuzdisj 39571 The first  N elements of the set of nonnegative integers are distinct from any later members. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
 |-  (
 ( 1 ... N )  i^i  ( ZZ>= `  ( N  +  1 )
 ) )  =  (/)
 
Theoremltdivgt1 39572 Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  B  <->  ( A  /  B )  <  A ) )
 
Theoremxrltned 39573 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremnnsplit 39574 Express the set of positive integers as the disjoint (see nnuzdisj 39571) union of the first  N values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
 |-  ( N  e.  NN  ->  NN  =  ( ( 1
 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
 
Theoremdivdiv3d 39575 Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  B  =/=  0
 )   &    |-  ( ph  ->  C  =/=  0 )   =>    |-  ( ph  ->  (
 ( A  /  B )  /  C )  =  ( A  /  ( C  x.  B ) ) )
 
Theoremabslt2sqd 39576 Comparison of the square of two numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  ( abs `  B ) )   =>    |-  ( ph  ->  ( A ^ 2 )  < 
 ( B ^ 2
 ) )
 
Theoremqenom 39577 The set of rational numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  QQ  ~~ 
 om
 
Theoremqct 39578 The set of rational numbers is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  QQ  ~<_  om
 
Theoremxrltnled 39579 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A  <  B  <->  -.  B  <_  A ) )
 
Theoremlenlteq 39580 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  -.  A  <  B )   =>    |-  ( ph  ->  A  =  B )
 
Theoremxrred 39581 An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  A  =/= -oo )   &    |-  ( ph  ->  A  =/= +oo )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrr2sscn2 39582 ℝ^ 2 is a subset of CC^  2. Common case. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( RR  X.  RR )  C_  ( CC  X.  CC )
 
Theoreminfxr 39583* The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A. x  e.  A  -.  x  <  B )   &    |-  ( ph  ->  A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  B )
 
Theoreminfxrunb2 39584* The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( A  C_  RR*  ->  ( A. x  e.  RR  E. y  e.  A  y  <  x  <-> inf ( A ,  RR* ,  <  )  = -oo ) )
 
Theoreminfxrbnd2 39585* The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( A  C_  RR*  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <-> -oo 
 < inf ( A ,  RR* ,  <  ) ) )
 
Theoreminfleinflem1 39586 Lemma for infleinf 39588, case  B  =/=  (/)  /\ -oo  < inf ( B ,  RR* ,  <  ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  B  C_  RR* )   &    |-  ( ph  ->  W  e.  RR+ )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  X 
 <_  (inf ( B ,  RR*
 ,  <  ) +e ( W  / 
 2 ) ) )   &    |-  ( ph  ->  Z  e.  A )   &    |-  ( ph  ->  Z 
 <_  ( X +e
 ( W  /  2
 ) ) )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  ) 
 <_  (inf ( B ,  RR*
 ,  <  ) +e W ) )
 
Theoreminfleinflem2 39587 Lemma for infleinf 39588, when inf ( B ,  RR* ,  <  )  = -oo. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  B  C_  RR* )   &    |-  ( ph  ->  R  e.  RR )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  X  <  ( R  -  2 ) )   &    |-  ( ph  ->  Z  e.  A )   &    |-  ( ph  ->  Z  <_  ( X +e
 1 ) )   =>    |-  ( ph  ->  Z  <  R )
 
Theoreminfleinf 39588* If any element of  B can be approximated from above by members of  A, then the infimum of  A is smaller or equal to the infimum of  B. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  B  C_  RR* )   &    |-  (
 ( ph  /\  x  e.  B  /\  y  e.  RR+ )  ->  E. z  e.  A  z  <_  ( x +e y ) )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  <_ inf ( B ,  RR* ,  <  ) )
 
Theoremxralrple4 39589* Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( A  <_  B  <->  A. x  e.  RR+  A 
 <_  ( B  +  ( x ^ N ) ) ) )
 
Theoremxralrple3 39590* Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   =>    |-  ( ph  ->  ( A  <_  B  <->  A. x  e.  RR+  A 
 <_  ( B  +  ( C  x.  x ) ) ) )
 
Theoremeluzelzd 39591 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  N  e.  ZZ )
 
Theoremsuplesup2 39592* If any element of  A is smaller or equal to an element in 
B, then the supremum of  A is smaller or equal to the supremum of  B. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( ph  ->  A  C_  RR* )   &    |-  ( ph  ->  B  C_  RR* )   &    |-  (
 ( ph  /\  x  e.  A )  ->  E. y  e.  B  x  <_  y
 )   =>    |-  ( ph  ->  sup ( A ,  RR* ,  <  ) 
 <_  sup ( B ,  RR*
 ,  <  ) )
 
Theoremrecnnltrp 39593  N is a natural number large enough that its reciprocal is smaller than the given positive  E. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  N  =  ( ( |_ `  (
 1  /  E )
 )  +  1 )   =>    |-  ( E  e.  RR+  ->  ( N  e.  NN  /\  (
 1  /  N )  <  E ) )
 
Theoremfiminre2 39594* A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  (
 ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  x  <_  y )
 
Theoremnnn0 39595 The set of positive integers is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  NN  =/= 
 (/)
 
Theoremfzct 39596 A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( N ... M )  ~<_  om
 
Theoremrpgtrecnn 39597* Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( A  e.  RR+  ->  E. n  e.  NN  ( 1  /  n )  <  A )
 
Theoremfzossuz 39598 A half-open integer interval is a subset of an upper set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( M..^ N )  C_  ( ZZ>=
 `  M )
 
Theoremfzossz 39599 A half-open integer interval is a set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  ( M..^ N )  C_  ZZ
 
Theoreminfrefilb 39600 The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
 |-  (
 ( B  C_  RR  /\  B  e.  Fin  /\  A  e.  B )  -> inf ( B ,  RR ,  <  )  <_  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >