Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpge Structured version   Visualization version   Unicode version

Theorem infrpge 39567
Description: The infimum of a non empty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
infrpge.xph  |-  F/ x ph
infrpge.a  |-  ( ph  ->  A  C_  RR* )
infrpge.an0  |-  ( ph  ->  A  =/=  (/) )
infrpge.bnd  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  x  <_  y )
infrpge.b  |-  ( ph  ->  B  e.  RR+ )
Assertion
Ref Expression
infrpge  |-  ( ph  ->  E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) )
Distinct variable groups:    x, A, y    z, A    z, B    ph, z
Allowed substitution hints:    ph( x, y)    B( x, y)

Proof of Theorem infrpge
StepHypRef Expression
1 infrpge.an0 . . . . . 6  |-  ( ph  ->  A  =/=  (/) )
2 n0 3931 . . . . . . 7  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
32biimpi 206 . . . . . 6  |-  ( A  =/=  (/)  ->  E. z 
z  e.  A )
41, 3syl 17 . . . . 5  |-  ( ph  ->  E. z  z  e.  A )
54adantr 481 . . . 4  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  E. z 
z  e.  A )
6 nfv 1843 . . . . 5  |-  F/ z ( ph  /\ inf ( A ,  RR* ,  <  )  = +oo )
7 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  /\  z  e.  A )  ->  z  e.  A )
8 infrpge.a . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  RR* )
98adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  A  C_ 
RR* )
10 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  A )
119, 10sseldd 3604 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  RR* )
12 pnfge 11964 . . . . . . . . . 10  |-  ( z  e.  RR*  ->  z  <_ +oo )
1311, 12syl 17 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  z  <_ +oo )
1413adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  /\  z  e.  A )  ->  z  <_ +oo )
15 oveq1 6657 . . . . . . . . . . 11  |-  (inf ( A ,  RR* ,  <  )  = +oo  ->  (inf ( A ,  RR* ,  <  ) +e B )  =  ( +oo +e B ) )
1615adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  (inf ( A ,  RR* ,  <  ) +e B )  =  ( +oo +e B ) )
17 infrpge.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR+ )
1817rpxrd 11873 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR* )
1917rpred 11872 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR )
20 renemnf 10088 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  B  =/= -oo )
2119, 20syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/= -oo )
22 xaddpnf2 12058 . . . . . . . . . . . 12  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
2318, 21, 22syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( +oo +e
B )  = +oo )
2423adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  ( +oo +e B )  = +oo )
2516, 24eqtr2d 2657 . . . . . . . . 9  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  -> +oo  =  (inf ( A ,  RR* ,  <  ) +e
B ) )
2625adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  /\  z  e.  A )  -> +oo  =  (inf ( A ,  RR* ,  <  ) +e B ) )
2714, 26breqtrd 4679 . . . . . . 7  |-  ( ( ( ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  /\  z  e.  A )  ->  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) )
287, 27jca 554 . . . . . 6  |-  ( ( ( ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  /\  z  e.  A )  ->  ( z  e.  A  /\  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) ) )
2928ex 450 . . . . 5  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  (
z  e.  A  -> 
( z  e.  A  /\  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) ) ) )
306, 29eximd 2085 . . . 4  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  ( E. z  z  e.  A  ->  E. z ( z  e.  A  /\  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) ) ) )
315, 30mpd 15 . . 3  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  E. z
( z  e.  A  /\  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) ) )
32 df-rex 2918 . . 3  |-  ( E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e B )  <->  E. z ( z  e.  A  /\  z  <_ 
(inf ( A ,  RR* ,  <  ) +e B ) ) )
3331, 32sylibr 224 . 2  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  = +oo )  ->  E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e
B ) )
34 simpl 473 . . . 4  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  ph )
35 infrpge.bnd . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  x  <_  y )
36 infrpge.xph . . . . . . . . . 10  |-  F/ x ph
37 nfv 1843 . . . . . . . . . 10  |-  F/ x -oo  < inf ( A ,  RR* ,  <  )
38 mnfxr 10096 . . . . . . . . . . . . 13  |- -oo  e.  RR*
3938a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  -> -oo  e.  RR* )
40 rexr 10085 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  x  e.  RR* )
41403ad2ant2 1083 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  ->  x  e.  RR* )
42 infxrcl 12163 . . . . . . . . . . . . . 14  |-  ( A 
C_  RR*  -> inf ( A ,  RR* ,  <  )  e.  RR* )
438, 42syl 17 . . . . . . . . . . . . 13  |-  ( ph  -> inf ( A ,  RR* ,  <  )  e.  RR* )
44433ad2ant1 1082 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  -> inf ( A ,  RR* ,  <  )  e.  RR* )
45 mnflt 11957 . . . . . . . . . . . . 13  |-  ( x  e.  RR  -> -oo  <  x )
46453ad2ant2 1083 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  -> -oo  <  x
)
47 simp3 1063 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  ->  A. y  e.  A  x  <_  y )
488adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  A  C_  RR* )
4940adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
RR* )
50 infxrgelb 12165 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  RR*  /\  x  e.  RR* )  ->  (
x  <_ inf ( A ,  RR* ,  <  )  <->  A. y  e.  A  x  <_  y ) )
5148, 49, 50syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  <_ inf ( A ,  RR* ,  <  )  <->  A. y  e.  A  x  <_  y ) )
52513adant3 1081 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  ->  ( x  <_ inf ( A ,  RR* ,  <  )  <->  A. y  e.  A  x  <_  y ) )
5347, 52mpbird 247 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  ->  x  <_ inf ( A ,  RR* ,  <  ) )
5439, 41, 44, 46, 53xrltletrd 11992 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR  /\  A. y  e.  A  x  <_  y
)  -> -oo  < inf ( A ,  RR* ,  <  ) )
55543exp 1264 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  -> -oo  < inf ( A ,  RR* ,  <  )
) ) )
5636, 37, 55rexlimd 3026 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  -> -oo  < inf ( A ,  RR* ,  <  )
) )
5735, 56mpd 15 . . . . . . . 8  |-  ( ph  -> -oo  < inf ( A ,  RR* ,  <  )
)
5857adantr 481 . . . . . . 7  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  -> -oo  < inf ( A ,  RR* ,  <  ) )
59 neqne 2802 . . . . . . . . 9  |-  ( -. inf ( A ,  RR* ,  <  )  = +oo  -> inf ( A ,  RR* ,  <  )  =/= +oo )
6059adantl 482 . . . . . . . 8  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  -> inf ( A ,  RR* ,  <  )  =/= +oo )
6143adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  -> inf ( A ,  RR* ,  <  )  e.  RR* )
6260, 61nepnfltpnf 39558 . . . . . . 7  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  -> inf ( A ,  RR* ,  <  )  < +oo )
6358, 62jca 554 . . . . . 6  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  ( -oo  < inf ( A ,  RR* ,  <  )  /\ inf ( A ,  RR* ,  <  )  < +oo ) )
64 xrrebnd 11999 . . . . . . . 8  |-  (inf ( A ,  RR* ,  <  )  e.  RR*  ->  (inf ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  < inf ( A ,  RR* ,  <  )  /\ inf ( A ,  RR* ,  <  )  < +oo ) ) )
6543, 64syl 17 . . . . . . 7  |-  ( ph  ->  (inf ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  < inf ( A ,  RR* ,  <  )  /\ inf ( A ,  RR* ,  <  )  < +oo ) ) )
6665adantr 481 . . . . . 6  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  (inf ( A ,  RR* ,  <  )  e.  RR  <->  ( -oo  < inf ( A ,  RR* ,  <  )  /\ inf ( A ,  RR* ,  <  )  < +oo ) ) )
6763, 66mpbird 247 . . . . 5  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  -> inf ( A ,  RR* ,  <  )  e.  RR )
68 simpr 477 . . . . . . . 8  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  -> inf ( A ,  RR* ,  <  )  e.  RR )
6917adantr 481 . . . . . . . 8  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  B  e.  RR+ )
7068, 69ltaddrpd 11905 . . . . . . 7  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  -> inf ( A ,  RR* ,  <  )  <  (inf ( A ,  RR* ,  <  )  +  B ) )
7119adantr 481 . . . . . . . . 9  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  B  e.  RR )
72 rexadd 12063 . . . . . . . . 9  |-  ( (inf ( A ,  RR* ,  <  )  e.  RR  /\  B  e.  RR )  ->  (inf ( A ,  RR* ,  <  ) +e B )  =  (inf ( A ,  RR* ,  <  )  +  B ) )
7368, 71, 72syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  (inf ( A ,  RR* ,  <  ) +e B )  =  (inf ( A ,  RR* ,  <  )  +  B ) )
7473eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  (inf ( A ,  RR* ,  <  )  +  B )  =  (inf ( A ,  RR* ,  <  ) +e B ) )
7570, 74breqtrd 4679 . . . . . 6  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  -> inf ( A ,  RR* ,  <  )  <  (inf ( A ,  RR* ,  <  ) +e B ) )
7643adantr 481 . . . . . . 7  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  -> inf ( A ,  RR* ,  <  )  e.  RR* )
7743, 18xaddcld 12131 . . . . . . . 8  |-  ( ph  ->  (inf ( A ,  RR* ,  <  ) +e B )  e. 
RR* )
7877adantr 481 . . . . . . 7  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  (inf ( A ,  RR* ,  <  ) +e B )  e.  RR* )
79 xrltnle 10105 . . . . . . 7  |-  ( (inf ( A ,  RR* ,  <  )  e.  RR*  /\  (inf ( A ,  RR* ,  <  ) +e B )  e. 
RR* )  ->  (inf ( A ,  RR* ,  <  )  <  (inf ( A ,  RR* ,  <  ) +e B )  <->  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) ) )
8076, 78, 79syl2anc 693 . . . . . 6  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  (inf ( A ,  RR* ,  <  )  <  (inf ( A ,  RR* ,  <  ) +e B )  <->  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) ) )
8175, 80mpbid 222 . . . . 5  |-  ( (
ph  /\ inf ( A ,  RR* ,  <  )  e.  RR )  ->  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_ inf ( A ,  RR* ,  <  )
)
8234, 67, 81syl2anc 693 . . . 4  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_ inf ( A ,  RR* ,  <  )
)
83 simpr 477 . . . . . 6  |-  ( (
ph  /\  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) )  ->  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) )
84 simpl 473 . . . . . . 7  |-  ( (
ph  /\  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) )  ->  ph )
85 infxrgelb 12165 . . . . . . . 8  |-  ( ( A  C_  RR*  /\  (inf ( A ,  RR* ,  <  ) +e B )  e.  RR* )  ->  (
(inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  )  <->  A. z  e.  A  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
) )
868, 77, 85syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  )  <->  A. z  e.  A  (inf ( A ,  RR* ,  <  ) +e B )  <_  z ) )
8784, 86syl 17 . . . . . 6  |-  ( (
ph  /\  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) )  ->  ( (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  )  <->  A. z  e.  A  (inf ( A ,  RR* ,  <  ) +e B )  <_  z ) )
8883, 87mtbid 314 . . . . 5  |-  ( (
ph  /\  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) )  ->  -.  A. z  e.  A  (inf ( A ,  RR* ,  <  ) +e B )  <_  z )
89 rexnal 2995 . . . . 5  |-  ( E. z  e.  A  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z  <->  -. 
A. z  e.  A  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)
9088, 89sylibr 224 . . . 4  |-  ( (
ph  /\  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ inf ( A ,  RR* ,  <  ) )  ->  E. z  e.  A  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ 
z )
9134, 82, 90syl2anc 693 . . 3  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  E. z  e.  A  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_  z )
9211adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)  ->  z  e.  RR* )
9377ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)  ->  (inf ( A ,  RR* ,  <  ) +e B )  e.  RR* )
94 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  A )  /\  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)  ->  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_  z )
95 xrltnle 10105 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  (inf ( A ,  RR* ,  <  ) +e B )  e.  RR* )  ->  (
z  <  (inf ( A ,  RR* ,  <  ) +e B )  <->  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ 
z ) )
9692, 93, 95syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  A )  /\  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)  ->  ( z  <  (inf ( A ,  RR* ,  <  ) +e B )  <->  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_  z ) )
9794, 96mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  A )  /\  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)  ->  z  <  (inf ( A ,  RR* ,  <  ) +e
B ) )
9892, 93, 97xrltled 39486 . . . . . 6  |-  ( ( ( ph  /\  z  e.  A )  /\  -.  (inf ( A ,  RR* ,  <  ) +e
B )  <_  z
)  ->  z  <_  (inf ( A ,  RR* ,  <  ) +e
B ) )
9998ex 450 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ 
z  ->  z  <_  (inf ( A ,  RR* ,  <  ) +e
B ) ) )
10099adantlr 751 . . . 4  |-  ( ( ( ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  /\  z  e.  A )  ->  ( -.  (inf ( A ,  RR* ,  <  ) +e B )  <_  z  ->  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) ) )
101100reximdva 3017 . . 3  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  ( E. z  e.  A  -.  (inf ( A ,  RR* ,  <  ) +e B )  <_ 
z  ->  E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e
B ) ) )
10291, 101mpd 15 . 2  |-  ( (
ph  /\  -. inf ( A ,  RR* ,  <  )  = +oo )  ->  E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e
B ) )
10333, 102pm2.61dan 832 1  |-  ( ph  ->  E. z  e.  A  z  <_  (inf ( A ,  RR* ,  <  ) +e B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650  infcinf 8347   RRcr 9935    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   +ecxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-rp 11833  df-xadd 11947
This theorem is referenced by:  infleinf  39588  infrpgernmpt  39695  ovnlerp  40776
  Copyright terms: Public domain W3C validator