MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2lem Structured version   Visualization version   Unicode version

Theorem isprm2lem 15394
Description: Lemma for isprm2 15395. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 792 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  =/=  1
)
21necomd 2849 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  =/=  P
)
3 simpr 477 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  ~~  2o )
4 nnz 11399 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  ZZ )
5 1dvds 14996 . . . . . . . 8  |-  ( P  e.  ZZ  ->  1  ||  P )
64, 5syl 17 . . . . . . 7  |-  ( P  e.  NN  ->  1  ||  P )
76ad2antrr 762 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  ||  P
)
8 1nn 11031 . . . . . . 7  |-  1  e.  NN
9 breq1 4656 . . . . . . . 8  |-  ( n  =  1  ->  (
n  ||  P  <->  1  ||  P ) )
109elrab3 3364 . . . . . . 7  |-  ( 1  e.  NN  ->  (
1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
) )
118, 10ax-mp 5 . . . . . 6  |-  ( 1  e.  { n  e.  NN  |  n  ||  P }  <->  1  ||  P
)
127, 11sylibr 224 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  1  e.  {
n  e.  NN  |  n  ||  P } )
13 iddvds 14995 . . . . . . . 8  |-  ( P  e.  ZZ  ->  P  ||  P )
144, 13syl 17 . . . . . . 7  |-  ( P  e.  NN  ->  P  ||  P )
1514ad2antrr 762 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  ||  P
)
16 breq1 4656 . . . . . . . 8  |-  ( n  =  P  ->  (
n  ||  P  <->  P  ||  P
) )
1716elrab3 3364 . . . . . . 7  |-  ( P  e.  NN  ->  ( P  e.  { n  e.  NN  |  n  ||  P }  <->  P  ||  P ) )
1817ad2antrr 762 . . . . . 6  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( P  e. 
{ n  e.  NN  |  n  ||  P }  <->  P 
||  P ) )
1915, 18mpbird 247 . . . . 5  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  P  e.  {
n  e.  NN  |  n  ||  P } )
20 en2eqpr 8830 . . . . 5  |-  ( ( { n  e.  NN  |  n  ||  P }  ~~  2o  /\  1  e. 
{ n  e.  NN  |  n  ||  P }  /\  P  e.  { n  e.  NN  |  n  ||  P } )  ->  (
1  =/=  P  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
213, 12, 19, 20syl3anc 1326 . . . 4  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  ( 1  =/= 
P  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
222, 21mpd 15 . . 3  |-  ( ( ( P  e.  NN  /\  P  =/=  1 )  /\  { n  e.  NN  |  n  ||  P }  ~~  2o )  ->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
)
2322ex 450 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
24 necom 2847 . . . 4  |-  ( 1  =/=  P  <->  P  =/=  1 )
25 pr2ne 8828 . . . . . 6  |-  ( ( 1  e.  NN  /\  P  e.  NN )  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
268, 25mpan 706 . . . . 5  |-  ( P  e.  NN  ->  ( { 1 ,  P }  ~~  2o  <->  1  =/=  P ) )
2726biimpar 502 . . . 4  |-  ( ( P  e.  NN  /\  1  =/=  P )  ->  { 1 ,  P }  ~~  2o )
2824, 27sylan2br 493 . . 3  |-  ( ( P  e.  NN  /\  P  =/=  1 )  ->  { 1 ,  P }  ~~  2o )
29 breq1 4656 . . 3  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P }  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { 1 ,  P }  ~~  2o ) )
3028, 29syl5ibrcom 237 . 2  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  ->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
3123, 30impbid 202 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   {cpr 4179   class class class wbr 4653   2oc2o 7554    ~~ cen 7952   1c1 9937   NNcn 11020   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-dvds 14984
This theorem is referenced by:  isprm2  15395
  Copyright terms: Public domain W3C validator