| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupub | Structured version Visualization version Unicode version | ||
| Description: If the limsup is not |
| Ref | Expression |
|---|---|
| limsupub.j |
|
| limsupub.e |
|
| limsupub.a |
|
| limsupub.f |
|
| limsupub.n |
|
| Ref | Expression |
|---|---|
| limsupub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupub.e |
. . . . 5
| |
| 2 | limsupub.a |
. . . . . 6
| |
| 3 | 2 | adantr 481 |
. . . . 5
|
| 4 | limsupub.f |
. . . . . 6
| |
| 5 | 4 | adantr 481 |
. . . . 5
|
| 6 | limsupub.j |
. . . . . . . . . 10
| |
| 7 | nfv 1843 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | nfan 1828 |
. . . . . . . . 9
|
| 9 | simprl 794 |
. . . . . . . . . . . 12
| |
| 10 | simpllr 799 |
. . . . . . . . . . . . . . 15
| |
| 11 | rexr 10085 |
. . . . . . . . . . . . . . 15
| |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . 14
|
| 13 | 4 | ffvelrnda 6359 |
. . . . . . . . . . . . . . 15
|
| 14 | 13 | ad4ant13 1292 |
. . . . . . . . . . . . . 14
|
| 15 | simpr 477 |
. . . . . . . . . . . . . 14
| |
| 16 | 12, 14, 15 | xrltled 39486 |
. . . . . . . . . . . . 13
|
| 17 | 16 | adantrl 752 |
. . . . . . . . . . . 12
|
| 18 | 9, 17 | jca 554 |
. . . . . . . . . . 11
|
| 19 | 18 | ex 450 |
. . . . . . . . . 10
|
| 20 | 19 | ex 450 |
. . . . . . . . 9
|
| 21 | 8, 20 | reximdai 3012 |
. . . . . . . 8
|
| 22 | 21 | ralimdv 2963 |
. . . . . . 7
|
| 23 | 22 | ralimdva 2962 |
. . . . . 6
|
| 24 | 23 | imp 445 |
. . . . 5
|
| 25 | 1, 3, 5, 24 | limsuppnfd 39934 |
. . . 4
|
| 26 | limsupub.n |
. . . . . 6
| |
| 27 | 26 | neneqd 2799 |
. . . . 5
|
| 28 | 27 | adantr 481 |
. . . 4
|
| 29 | 25, 28 | pm2.65da 600 |
. . 3
|
| 30 | imnan 438 |
. . . . . . . . 9
| |
| 31 | 30 | ralbii 2980 |
. . . . . . . 8
|
| 32 | ralnex 2992 |
. . . . . . . 8
| |
| 33 | 31, 32 | bitri 264 |
. . . . . . 7
|
| 34 | 33 | rexbii 3041 |
. . . . . 6
|
| 35 | rexnal 2995 |
. . . . . 6
| |
| 36 | 34, 35 | bitri 264 |
. . . . 5
|
| 37 | 36 | rexbii 3041 |
. . . 4
|
| 38 | rexnal 2995 |
. . . 4
| |
| 39 | 37, 38 | bitri 264 |
. . 3
|
| 40 | 29, 39 | sylibr 224 |
. 2
|
| 41 | nfv 1843 |
. . . . . 6
| |
| 42 | 8, 41 | nfan 1828 |
. . . . 5
|
| 43 | 13 | ad4ant14 1293 |
. . . . . . 7
|
| 44 | simpllr 799 |
. . . . . . . 8
| |
| 45 | 44 | rexrd 10089 |
. . . . . . 7
|
| 46 | 43, 45 | xrlenltd 10104 |
. . . . . 6
|
| 47 | 46 | imbi2d 330 |
. . . . 5
|
| 48 | 42, 47 | ralbida 2982 |
. . . 4
|
| 49 | 48 | rexbidva 3049 |
. . 3
|
| 50 | 49 | rexbidva 3049 |
. 2
|
| 51 | 40, 50 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-ico 12181 df-limsup 14202 |
| This theorem is referenced by: limsupubuz 39945 |
| Copyright terms: Public domain | W3C validator |