MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsmm Structured version   Visualization version   Unicode version

Theorem lindsmm 20167
Description: Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lindfmm.b  |-  B  =  ( Base `  S
)
lindfmm.c  |-  C  =  ( Base `  T
)
Assertion
Ref Expression
lindsmm  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( G " F )  e.  (LIndS `  T ) ) )

Proof of Theorem lindsmm
StepHypRef Expression
1 ibar 525 . . . 4  |-  ( F 
C_  B  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
213ad2ant3 1084 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
3 f1oi 6174 . . . . . 6  |-  (  _I  |`  F ) : F -1-1-onto-> F
4 f1of 6137 . . . . . 6  |-  ( (  _I  |`  F ) : F -1-1-onto-> F  ->  (  _I  |`  F ) : F --> F )
53, 4ax-mp 5 . . . . 5  |-  (  _I  |`  F ) : F --> F
6 simp3 1063 . . . . 5  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  F  C_  B )
7 fss 6056 . . . . 5  |-  ( ( (  _I  |`  F ) : F --> F  /\  F  C_  B )  -> 
(  _I  |`  F ) : F --> B )
85, 6, 7sylancr 695 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (  _I  |`  F ) : F --> B )
9 lindfmm.b . . . . 5  |-  B  =  ( Base `  S
)
10 lindfmm.c . . . . 5  |-  C  =  ( Base `  T
)
119, 10lindfmm 20166 . . . 4  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  (  _I  |`  F ) : F --> B )  -> 
( (  _I  |`  F ) LIndF 
S  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
128, 11syld3an3 1371 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
(  _I  |`  F ) LIndF 
S  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
132, 12bitr3d 270 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( F  C_  B  /\  (  _I  |`  F ) LIndF 
S )  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
14 lmhmlmod1 19033 . . . 4  |-  ( G  e.  ( S LMHom  T
)  ->  S  e.  LMod )
15143ad2ant1 1082 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  S  e.  LMod )
169islinds 20148 . . 3  |-  ( S  e.  LMod  ->  ( F  e.  (LIndS `  S
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
1715, 16syl 17 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( F  C_  B  /\  (  _I  |`  F ) LIndF 
S ) ) )
18 lmhmlmod2 19032 . . . . . . 7  |-  ( G  e.  ( S LMHom  T
)  ->  T  e.  LMod )
19183ad2ant1 1082 . . . . . 6  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  T  e.  LMod )
2019adantr 481 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  T  e.  LMod )
21 simpr 477 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G " F )  e.  (LIndS `  T )
)
22 f1ores 6151 . . . . . . . 8  |-  ( ( G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-onto-> ( G " F ) )
23 f1of1 6136 . . . . . . . 8  |-  ( ( G  |`  F ) : F -1-1-onto-> ( G " F
)  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
2422, 23syl 17 . . . . . . 7  |-  ( ( G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
25243adant1 1079 . . . . . 6  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
2625adantr 481 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G  |`  F ) : F -1-1-> ( G " F ) )
27 f1linds 20164 . . . . 5  |-  ( ( T  e.  LMod  /\  ( G " F )  e.  (LIndS `  T )  /\  ( G  |`  F ) : F -1-1-> ( G
" F ) )  ->  ( G  |`  F ) LIndF  T )
2820, 21, 26, 27syl3anc 1326 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G " F )  e.  (LIndS `  T
) )  ->  ( G  |`  F ) LIndF  T
)
29 df-ima 5127 . . . . 5  |-  ( G
" F )  =  ran  ( G  |`  F )
30 lindfrn 20160 . . . . . 6  |-  ( ( T  e.  LMod  /\  ( G  |`  F ) LIndF  T
)  ->  ran  ( G  |`  F )  e.  (LIndS `  T ) )
3119, 30sylan 488 . . . . 5  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G  |`  F ) LIndF 
T )  ->  ran  ( G  |`  F )  e.  (LIndS `  T
) )
3229, 31syl5eqel 2705 . . . 4  |-  ( ( ( G  e.  ( S LMHom  T )  /\  G : B -1-1-> C  /\  F  C_  B )  /\  ( G  |`  F ) LIndF 
T )  ->  ( G " F )  e.  (LIndS `  T )
)
3328, 32impbida 877 . . 3  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( G " F
)  e.  (LIndS `  T )  <->  ( G  |`  F ) LIndF  T ) )
34 coires1 5653 . . . 4  |-  ( G  o.  (  _I  |`  F ) )  =  ( G  |`  F )
3534breq1i 4660 . . 3  |-  ( ( G  o.  (  _I  |`  F ) ) LIndF  T  <->  ( G  |`  F ) LIndF  T )
3633, 35syl6bbr 278 . 2  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  (
( G " F
)  e.  (LIndS `  T )  <->  ( G  o.  (  _I  |`  F ) ) LIndF  T ) )
3713, 17, 363bitr4d 300 1  |-  ( ( G  e.  ( S LMHom 
T )  /\  G : B -1-1-> C  /\  F  C_  B )  ->  ( F  e.  (LIndS `  S
)  <->  ( G " F )  e.  (LIndS `  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653    _I cid 5023   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   LModclmod 18863   LMHom clmhm 19019   LIndF clindf 20143  LIndSclinds 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lindf 20145  df-linds 20146
This theorem is referenced by:  lindsmm2  20168
  Copyright terms: Public domain W3C validator