![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssneldd | Structured version Visualization version Unicode version |
Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssneld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ssneldd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ssneldd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneldd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssneld.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | ssneld 3605 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpd 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 |
This theorem is referenced by: 0nelrel 5162 cantnfp1lem3 8577 fpwwe2lem13 9464 pwfseqlem3 9482 hashbclem 13236 sumrblem 14442 incexclem 14568 prodrblem 14659 fprodntriv 14672 ramub1lem2 15731 mreexmrid 16303 mreexexlem2d 16305 acsfiindd 17177 lbspss 19082 lbsextlem4 19161 lindfrn 20160 fclscmpi 21833 lhop2 23778 lhop 23779 dvcnvrelem1 23780 axlowdimlem17 25838 erdszelem8 31180 osumcllem10N 35251 pexmidlem7N 35262 mapdindp2 37010 mapdindp3 37011 hdmapval3lemN 37129 hdmap11lem1 37133 fourierdlem80 40403 |
Copyright terms: Public domain | W3C validator |