| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lo1mul | Structured version Visualization version Unicode version | ||
| Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| o1add2.1 |
|
| o1add2.2 |
|
| lo1add.3 |
|
| lo1add.4 |
|
| lo1mul.5 |
|
| Ref | Expression |
|---|---|
| lo1mul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1add.3 |
. 2
| |
| 2 | lo1add.4 |
. 2
| |
| 3 | reeanv 3107 |
. . . 4
| |
| 4 | o1add2.1 |
. . . . . . . . . . 11
| |
| 5 | 4 | ralrimiva 2966 |
. . . . . . . . . 10
|
| 6 | dmmptg 5632 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . . 9
|
| 8 | lo1dm 14250 |
. . . . . . . . . 10
| |
| 9 | 1, 8 | syl 17 |
. . . . . . . . 9
|
| 10 | 7, 9 | eqsstr3d 3640 |
. . . . . . . 8
|
| 11 | 10 | adantr 481 |
. . . . . . 7
|
| 12 | rexanre 14086 |
. . . . . . 7
| |
| 13 | 11, 12 | syl 17 |
. . . . . 6
|
| 14 | simprl 794 |
. . . . . . . . 9
| |
| 15 | simprr 796 |
. . . . . . . . . 10
| |
| 16 | 0re 10040 |
. . . . . . . . . 10
| |
| 17 | ifcl 4130 |
. . . . . . . . . 10
| |
| 18 | 15, 16, 17 | sylancl 694 |
. . . . . . . . 9
|
| 19 | 14, 18 | remulcld 10070 |
. . . . . . . 8
|
| 20 | simplrr 801 |
. . . . . . . . . . . . 13
| |
| 21 | max2 12018 |
. . . . . . . . . . . . 13
| |
| 22 | 16, 20, 21 | sylancr 695 |
. . . . . . . . . . . 12
|
| 23 | o1add2.2 |
. . . . . . . . . . . . . . 15
| |
| 24 | 23, 2 | lo1mptrcl 14352 |
. . . . . . . . . . . . . 14
|
| 25 | 24 | adantlr 751 |
. . . . . . . . . . . . 13
|
| 26 | 20, 16, 17 | sylancl 694 |
. . . . . . . . . . . . 13
|
| 27 | letr 10131 |
. . . . . . . . . . . . 13
| |
| 28 | 25, 20, 26, 27 | syl3anc 1326 |
. . . . . . . . . . . 12
|
| 29 | 22, 28 | mpan2d 710 |
. . . . . . . . . . 11
|
| 30 | 4, 1 | lo1mptrcl 14352 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | adantlr 751 |
. . . . . . . . . . . . 13
|
| 32 | lo1mul.5 |
. . . . . . . . . . . . . 14
| |
| 33 | 32 | adantlr 751 |
. . . . . . . . . . . . 13
|
| 34 | 31, 33 | jca 554 |
. . . . . . . . . . . 12
|
| 35 | simplrl 800 |
. . . . . . . . . . . 12
| |
| 36 | max1 12016 |
. . . . . . . . . . . . . 14
| |
| 37 | 16, 20, 36 | sylancr 695 |
. . . . . . . . . . . . 13
|
| 38 | 26, 37 | jca 554 |
. . . . . . . . . . . 12
|
| 39 | lemul12b 10880 |
. . . . . . . . . . . 12
| |
| 40 | 34, 35, 25, 38, 39 | syl22anc 1327 |
. . . . . . . . . . 11
|
| 41 | 29, 40 | sylan2d 499 |
. . . . . . . . . 10
|
| 42 | 41 | imim2d 57 |
. . . . . . . . 9
|
| 43 | 42 | ralimdva 2962 |
. . . . . . . 8
|
| 44 | breq2 4657 |
. . . . . . . . . . 11
| |
| 45 | 44 | imbi2d 330 |
. . . . . . . . . 10
|
| 46 | 45 | ralbidv 2986 |
. . . . . . . . 9
|
| 47 | 46 | rspcev 3309 |
. . . . . . . 8
|
| 48 | 19, 43, 47 | syl6an 568 |
. . . . . . 7
|
| 49 | 48 | reximdv 3016 |
. . . . . 6
|
| 50 | 13, 49 | sylbird 250 |
. . . . 5
|
| 51 | 50 | rexlimdvva 3038 |
. . . 4
|
| 52 | 3, 51 | syl5bir 233 |
. . 3
|
| 53 | 10, 30 | ello1mpt 14252 |
. . . . 5
|
| 54 | rexcom 3099 |
. . . . 5
| |
| 55 | 53, 54 | syl6bb 276 |
. . . 4
|
| 56 | 10, 24 | ello1mpt 14252 |
. . . . 5
|
| 57 | rexcom 3099 |
. . . . 5
| |
| 58 | 56, 57 | syl6bb 276 |
. . . 4
|
| 59 | 55, 58 | anbi12d 747 |
. . 3
|
| 60 | 30, 24 | remulcld 10070 |
. . . 4
|
| 61 | 10, 60 | ello1mpt 14252 |
. . 3
|
| 62 | 52, 59, 61 | 3imtr4d 283 |
. 2
|
| 63 | 1, 2, 62 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-ico 12181 df-lo1 14222 |
| This theorem is referenced by: lo1mul2 14359 pntrlog2bndlem4 25269 pntrlog2bndlem5 25270 |
| Copyright terms: Public domain | W3C validator |