MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmub2x Structured version   Visualization version   Unicode version

Theorem lsmub2x 18062
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v  |-  B  =  ( Base `  G
)
lsmless2.s  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
lsmub2x  |-  ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  ->  U  C_  ( T  .(+)  U ) )

Proof of Theorem lsmub2x
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 submrcl 17346 . . . . . 6  |-  ( T  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
21ad2antrr 762 . . . . 5  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  G  e.  Mnd )
3 simpr 477 . . . . . 6  |-  ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  ->  U  C_  B )
43sselda 3603 . . . . 5  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  x  e.  B )
5 lsmless2.v . . . . . 6  |-  B  =  ( Base `  G
)
6 eqid 2622 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
7 eqid 2622 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
85, 6, 7mndlid 17311 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) x )  =  x )
92, 4, 8syl2anc 693 . . . 4  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  (
( 0g `  G
) ( +g  `  G
) x )  =  x )
105submss 17350 . . . . . 6  |-  ( T  e.  (SubMnd `  G
)  ->  T  C_  B
)
1110ad2antrr 762 . . . . 5  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  T  C_  B )
12 simplr 792 . . . . 5  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  U  C_  B )
137subm0cl 17352 . . . . . 6  |-  ( T  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  T
)
1413ad2antrr 762 . . . . 5  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  ( 0g `  G )  e.  T )
15 simpr 477 . . . . 5  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  x  e.  U )
16 lsmless2.s . . . . . 6  |-  .(+)  =  (
LSSum `  G )
175, 6, 16lsmelvalix 18056 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  T  C_  B  /\  U  C_  B )  /\  ( ( 0g `  G )  e.  T  /\  x  e.  U
) )  ->  (
( 0g `  G
) ( +g  `  G
) x )  e.  ( T  .(+)  U ) )
182, 11, 12, 14, 15, 17syl32anc 1334 . . . 4  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  (
( 0g `  G
) ( +g  `  G
) x )  e.  ( T  .(+)  U ) )
199, 18eqeltrrd 2702 . . 3  |-  ( ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  /\  x  e.  U )  ->  x  e.  ( T  .(+)  U ) )
2019ex 450 . 2  |-  ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  ->  (
x  e.  U  ->  x  e.  ( T  .(+) 
U ) ) )
2120ssrdv 3609 1  |-  ( ( T  e.  (SubMnd `  G )  /\  U  C_  B )  ->  U  C_  ( T  .(+)  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294  SubMndcsubmnd 17334   LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-lsm 18051
This theorem is referenced by:  lsmub2  18072
  Copyright terms: Public domain W3C validator