| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 |
|
| Ref | Expression |
|---|---|
| ltexprlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssnel 4039 |
. . 3
| |
| 2 | prnmadd 9819 |
. . . . . . . . 9
| |
| 3 | 2 | anim2i 593 |
. . . . . . . 8
|
| 4 | 19.42v 1918 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylibr 224 |
. . . . . . 7
|
| 6 | 5 | exp32 631 |
. . . . . 6
|
| 7 | 6 | com3l 89 |
. . . . 5
|
| 8 | 7 | impd 447 |
. . . 4
|
| 9 | 8 | eximdv 1846 |
. . 3
|
| 10 | 1, 9 | syl5 34 |
. 2
|
| 11 | ltexprlem.1 |
. . . . 5
| |
| 12 | 11 | abeq2i 2735 |
. . . 4
|
| 13 | 12 | exbii 1774 |
. . 3
|
| 14 | n0 3931 |
. . 3
| |
| 15 | excom 2042 |
. . 3
| |
| 16 | 13, 14, 15 | 3bitr4i 292 |
. 2
|
| 17 | 10, 16 | syl6ibr 242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-ltnq 9740 df-np 9803 |
| This theorem is referenced by: ltexprlem5 9862 |
| Copyright terms: Public domain | W3C validator |