MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem5 Structured version   Visualization version   Unicode version

Theorem ltexprlem5 9862
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem5  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem5
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem1 9858 . . . . 5  |-  ( B  e.  P.  ->  ( A  C.  B  ->  C  =/=  (/) ) )
3 0pss 4013 . . . . 5  |-  ( (/)  C.  C  <->  C  =/=  (/) )
42, 3syl6ibr 242 . . . 4  |-  ( B  e.  P.  ->  ( A  C.  B  ->  (/)  C.  C
) )
54imp 445 . . 3  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  (/)  C.  C )
61ltexprlem2 9859 . . . 4  |-  ( B  e.  P.  ->  C  C. 
Q. )
76adantr 481 . . 3  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  C.  Q. )
81ltexprlem3 9860 . . . . . 6  |-  ( B  e.  P.  ->  (
x  e.  C  ->  A. z ( z  <Q  x  ->  z  e.  C
) ) )
91ltexprlem4 9861 . . . . . . 7  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z ( z  e.  C  /\  x  <Q  z ) ) )
10 df-rex 2918 . . . . . . 7  |-  ( E. z  e.  C  x 
<Q  z  <->  E. z ( z  e.  C  /\  x  <Q  z ) )
119, 10syl6ibr 242 . . . . . 6  |-  ( B  e.  P.  ->  (
x  e.  C  ->  E. z  e.  C  x  <Q  z ) )
128, 11jcad 555 . . . . 5  |-  ( B  e.  P.  ->  (
x  e.  C  -> 
( A. z ( z  <Q  x  ->  z  e.  C )  /\  E. z  e.  C  x 
<Q  z ) ) )
1312ralrimiv 2965 . . . 4  |-  ( B  e.  P.  ->  A. x  e.  C  ( A. z ( z  <Q  x  ->  z  e.  C
)  /\  E. z  e.  C  x  <Q  z ) )
1413adantr 481 . . 3  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  A. x  e.  C  ( A. z ( z 
<Q  x  ->  z  e.  C )  /\  E. z  e.  C  x  <Q  z ) )
155, 7, 14jca31 557 . 2  |-  ( ( B  e.  P.  /\  A  C.  B )  -> 
( ( (/)  C.  C  /\  C  C.  Q. )  /\  A. x  e.  C  ( A. z ( z 
<Q  x  ->  z  e.  C )  /\  E. z  e.  C  x  <Q  z ) ) )
16 elnp 9809 . 2  |-  ( C  e.  P.  <->  ( ( (/)  C.  C  /\  C  C.  Q. )  /\  A. x  e.  C  ( A. z ( z  <Q  x  ->  z  e.  C
)  /\  E. z  e.  C  x  <Q  z ) ) )
1715, 16sylibr 224 1  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    C. wpss 3575   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   Q.cnq 9674    +Q cplq 9677    <Q cltq 9680   P.cnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-ltnq 9740  df-np 9803
This theorem is referenced by:  ltexprlem6  9863  ltexprlem7  9864  ltexpri  9865
  Copyright terms: Public domain W3C validator