MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdprd Structured version   Visualization version   Unicode version

Theorem subgdprd 18434
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subgdprd.1  |-  H  =  ( Gs  A )
subgdprd.2  |-  ( ph  ->  A  e.  (SubGrp `  G ) )
subgdprd.3  |-  ( ph  ->  G dom DProd  S )
subgdprd.4  |-  ( ph  ->  ran  S  C_  ~P A )
Assertion
Ref Expression
subgdprd  |-  ( ph  ->  ( H DProd  S )  =  ( G DProd  S
) )

Proof of Theorem subgdprd
StepHypRef Expression
1 subgdprd.2 . . . . . 6  |-  ( ph  ->  A  e.  (SubGrp `  G ) )
2 subgdprd.1 . . . . . . 7  |-  H  =  ( Gs  A )
32subggrp 17597 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
41, 3syl 17 . . . . 5  |-  ( ph  ->  H  e.  Grp )
5 eqid 2622 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
65subgacs 17629 . . . . 5  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
7 acsmre 16313 . . . . 5  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
84, 6, 73syl 18 . . . 4  |-  ( ph  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
9 subgrcl 17599 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  G  e.  Grp )
101, 9syl 17 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
11 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
1211subgacs 17629 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
13 acsmre 16313 . . . . . 6  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
1410, 12, 133syl 18 . . . . 5  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
15 eqid 2622 . . . . 5  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
16 subgdprd.3 . . . . . . . 8  |-  ( ph  ->  G dom DProd  S )
17 dprdf 18405 . . . . . . . 8  |-  ( G dom DProd  S  ->  S : dom  S --> (SubGrp `  G )
)
18 frn 6053 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
1916, 17, 183syl 18 . . . . . . 7  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
20 mresspw 16252 . . . . . . . 8  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2114, 20syl 17 . . . . . . 7  |-  ( ph  ->  (SubGrp `  G )  C_ 
~P ( Base `  G
) )
2219, 21sstrd 3613 . . . . . 6  |-  ( ph  ->  ran  S  C_  ~P ( Base `  G )
)
23 sspwuni 4611 . . . . . 6  |-  ( ran 
S  C_  ~P ( Base `  G )  <->  U. ran  S  C_  ( Base `  G
) )
2422, 23sylib 208 . . . . 5  |-  ( ph  ->  U. ran  S  C_  ( Base `  G )
)
2514, 15, 24mrcssidd 16285 . . . 4  |-  ( ph  ->  U. ran  S  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
2615mrccl 16271 . . . . . 6  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  S  C_  ( Base `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ran  S )  e.  (SubGrp `  G )
)
2714, 24, 26syl2anc 693 . . . . 5  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S )  e.  (SubGrp `  G )
)
28 subgdprd.4 . . . . . . 7  |-  ( ph  ->  ran  S  C_  ~P A )
29 sspwuni 4611 . . . . . . 7  |-  ( ran 
S  C_  ~P A  <->  U.
ran  S  C_  A )
3028, 29sylib 208 . . . . . 6  |-  ( ph  ->  U. ran  S  C_  A )
3115mrcsscl 16280 . . . . . 6  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  S  C_  A  /\  A  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  S )  C_  A
)
3214, 30, 1, 31syl3anc 1326 . . . . 5  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S )  C_  A )
332subsubg 17617 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ran  S )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ran  S )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  S )  C_  A
) ) )
341, 33syl 17 . . . . 5  |-  ( ph  ->  ( ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  S
)  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ran  S )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  S )  C_  A
) ) )
3527, 32, 34mpbir2and 957 . . . 4  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S )  e.  (SubGrp `  H )
)
36 eqid 2622 . . . . 5  |-  (mrCls `  (SubGrp `  H ) )  =  (mrCls `  (SubGrp `  H ) )
3736mrcsscl 16280 . . . 4  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U.
ran  S  C_  ( (mrCls `  (SubGrp `  G )
) `  U. ran  S
)  /\  ( (mrCls `  (SubGrp `  G )
) `  U. ran  S
)  e.  (SubGrp `  H ) )  -> 
( (mrCls `  (SubGrp `  H ) ) `  U. ran  S )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
388, 25, 35, 37syl3anc 1326 . . 3  |-  ( ph  ->  ( (mrCls `  (SubGrp `  H ) ) `  U. ran  S )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
392subgdmdprd 18433 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
401, 39syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_ 
~P A ) ) )
4116, 28, 40mpbir2and 957 . . . . . . . . 9  |-  ( ph  ->  H dom DProd  S )
42 eqidd 2623 . . . . . . . . 9  |-  ( ph  ->  dom  S  =  dom  S )
4341, 42dprdf2 18406 . . . . . . . 8  |-  ( ph  ->  S : dom  S --> (SubGrp `  H ) )
44 frn 6053 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  H )  ->  ran  S 
C_  (SubGrp `  H )
)
4543, 44syl 17 . . . . . . 7  |-  ( ph  ->  ran  S  C_  (SubGrp `  H ) )
46 mresspw 16252 . . . . . . . 8  |-  ( (SubGrp `  H )  e.  (Moore `  ( Base `  H
) )  ->  (SubGrp `  H )  C_  ~P ( Base `  H )
)
478, 46syl 17 . . . . . . 7  |-  ( ph  ->  (SubGrp `  H )  C_ 
~P ( Base `  H
) )
4845, 47sstrd 3613 . . . . . 6  |-  ( ph  ->  ran  S  C_  ~P ( Base `  H )
)
49 sspwuni 4611 . . . . . 6  |-  ( ran 
S  C_  ~P ( Base `  H )  <->  U. ran  S  C_  ( Base `  H
) )
5048, 49sylib 208 . . . . 5  |-  ( ph  ->  U. ran  S  C_  ( Base `  H )
)
518, 36, 50mrcssidd 16285 . . . 4  |-  ( ph  ->  U. ran  S  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ran  S ) )
5236mrccl 16271 . . . . . . 7  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U.
ran  S  C_  ( Base `  H ) )  -> 
( (mrCls `  (SubGrp `  H ) ) `  U. ran  S )  e.  (SubGrp `  H )
)
538, 50, 52syl2anc 693 . . . . . 6  |-  ( ph  ->  ( (mrCls `  (SubGrp `  H ) ) `  U. ran  S )  e.  (SubGrp `  H )
)
542subsubg 17617 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ran  S )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ran  S )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ran  S )  C_  A
) ) )
551, 54syl 17 . . . . . 6  |-  ( ph  ->  ( ( (mrCls `  (SubGrp `  H ) ) `
 U. ran  S
)  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ran  S )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ran  S )  C_  A
) ) )
5653, 55mpbid 222 . . . . 5  |-  ( ph  ->  ( ( (mrCls `  (SubGrp `  H ) ) `
 U. ran  S
)  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ran  S )  C_  A
) )
5756simpld 475 . . . 4  |-  ( ph  ->  ( (mrCls `  (SubGrp `  H ) ) `  U. ran  S )  e.  (SubGrp `  G )
)
5815mrcsscl 16280 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  S  C_  ( (mrCls `  (SubGrp `  H )
) `  U. ran  S
)  /\  ( (mrCls `  (SubGrp `  H )
) `  U. ran  S
)  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ran  S )  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ran  S ) )
5914, 51, 57, 58syl3anc 1326 . . 3  |-  ( ph  ->  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S )  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ran  S ) )
6038, 59eqssd 3620 . 2  |-  ( ph  ->  ( (mrCls `  (SubGrp `  H ) ) `  U. ran  S )  =  ( (mrCls `  (SubGrp `  G ) ) `  U. ran  S ) )
6136dprdspan 18426 . . 3  |-  ( H dom DProd  S  ->  ( H DProd 
S )  =  ( (mrCls `  (SubGrp `  H
) ) `  U. ran  S ) )
6241, 61syl 17 . 2  |-  ( ph  ->  ( H DProd  S )  =  ( (mrCls `  (SubGrp `  H ) ) `
 U. ran  S
) )
6315dprdspan 18426 . . 3  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  S ) )
6416, 63syl 17 . 2  |-  ( ph  ->  ( G DProd  S )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ran  S
) )
6560, 62, 643eqtr4d 2666 1  |-  ( ph  ->  ( H DProd  S )  =  ( G DProd  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  ablfaclem3  18486
  Copyright terms: Public domain W3C validator