MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulerpqlem Structured version   Visualization version   Unicode version

Theorem mulerpqlem 9777
Description: Lemma for mulerpq 9779. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulerpqlem  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( A  .pQ  C )  ~Q  ( B 
.pQ  C ) ) )

Proof of Theorem mulerpqlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7198 . . . . 5  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
213ad2ant1 1082 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  A )  e.  N. )
3 xp1st 7198 . . . . 5  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
433ad2ant3 1084 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  C )  e.  N. )
5 mulclpi 9715 . . . 4  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  C ) )  e. 
N. )
62, 4, 5syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  A )  .N  ( 1st `  C
) )  e.  N. )
7 xp2nd 7199 . . . . 5  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
873ad2ant1 1082 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  A )  e.  N. )
9 xp2nd 7199 . . . . 5  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
1093ad2ant3 1084 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  C )  e.  N. )
11 mulclpi 9715 . . . 4  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )
128, 10, 11syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  A )  .N  ( 2nd `  C
) )  e.  N. )
13 xp1st 7198 . . . . 5  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
14133ad2ant2 1083 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 1st `  B )  e.  N. )
15 mulclpi 9715 . . . 4  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N. )
1614, 4, 15syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  B )  .N  ( 1st `  C
) )  e.  N. )
17 xp2nd 7199 . . . . 5  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
18173ad2ant2 1083 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( 2nd `  B )  e.  N. )
19 mulclpi 9715 . . . 4  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
2018, 10, 19syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 2nd `  B )  .N  ( 2nd `  C
) )  e.  N. )
21 enqbreq 9741 . . 3  |-  ( ( ( ( ( 1st `  A )  .N  ( 1st `  C ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )  /\  (
( ( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N.  /\  ( ( 2nd `  B )  .N  ( 2nd `  C
) )  e.  N. ) )  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.  ~Q  <. ( ( 1st `  B )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. 
<->  ( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
226, 12, 16, 20, 21syl22anc 1327 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.  ~Q  <. ( ( 1st `  B )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. 
<->  ( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
23 mulpipq2 9761 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  C )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.
)
24233adant2 1080 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  .pQ  C )  =  <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.
)
25 mulpipq2 9761 . . . 4  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  .pQ  C )  = 
<. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
26253adant1 1079 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( B  .pQ  C )  =  <. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
2724, 26breq12d 4666 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( A  .pQ  C )  ~Q  ( B  .pQ  C )  <->  <. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.  ~Q  <. ( ( 1st `  B )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. ) )
28 enqbreq2 9742 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
29283adant3 1081 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B ) )  =  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) )
30 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
314, 10, 30syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  C )  .N  ( 2nd `  C
) )  e.  N. )
32 mulclpi 9715 . . . . 5  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
332, 18, 32syl2anc 693 . . . 4  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )
34 mulcanpi 9722 . . . 4  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  A )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
3531, 33, 34syl2anc 693 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( 1st `  A
)  .N  ( 2nd `  B ) )  =  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
36 mulcompi 9718 . . . . . 6  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  C ) ) )
37 fvex 6201 . . . . . . 7  |-  ( 1st `  A )  e.  _V
38 fvex 6201 . . . . . . 7  |-  ( 2nd `  B )  e.  _V
39 fvex 6201 . . . . . . 7  |-  ( 1st `  C )  e.  _V
40 mulcompi 9718 . . . . . . 7  |-  ( x  .N  y )  =  ( y  .N  x
)
41 mulasspi 9719 . . . . . . 7  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
42 fvex 6201 . . . . . . 7  |-  ( 2nd `  C )  e.  _V
4337, 38, 39, 40, 41, 42caov4 6865 . . . . . 6  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
4436, 43eqtri 2644 . . . . 5  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )
45 mulcompi 9718 . . . . . 6  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  C ) ) )
46 fvex 6201 . . . . . . 7  |-  ( 1st `  B )  e.  _V
47 fvex 6201 . . . . . . 7  |-  ( 2nd `  A )  e.  _V
4846, 47, 39, 40, 41, 42caov4 6865 . . . . . 6  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 1st `  B )  .N  ( 1st `  C
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  C ) ) )
49 mulcompi 9718 . . . . . 6  |-  ( ( ( 1st `  B
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 1st `  C ) ) )
5045, 48, 493eqtri 2648 . . . . 5  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 1st `  C ) ) )
5144, 50eqeq12i 2636 . . . 4  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) )
5251a1i 11 . . 3  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( (
( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( 1st `  A )  .N  ( 1st `  C ) )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
5329, 35, 523bitr2d 296 . 2  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 1st `  C ) ) ) ) )
5422, 27, 533bitr4rd 301 1  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. )
)  ->  ( A  ~Q  B  <->  ( A  .pQ  C )  ~Q  ( B 
.pQ  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   N.cnpi 9666    .N cmi 9668    .pQ cmpq 9671    ~Q ceq 9673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-ni 9694  df-mi 9696  df-mpq 9731  df-enq 9733
This theorem is referenced by:  mulerpq  9779
  Copyright terms: Public domain W3C validator