MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem1 Structured version   Visualization version   Unicode version

Theorem nn0opthlem1 13055
Description: A rather pretty lemma for nn0opthi 13057. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0opthlem1.1  |-  A  e. 
NN0
nn0opthlem1.2  |-  C  e. 
NN0
Assertion
Ref Expression
nn0opthlem1  |-  ( A  <  C  <->  ( ( A  x.  A )  +  ( 2  x.  A ) )  < 
( C  x.  C
) )

Proof of Theorem nn0opthlem1
StepHypRef Expression
1 nn0opthlem1.1 . . . 4  |-  A  e. 
NN0
2 1nn0 11308 . . . 4  |-  1  e.  NN0
31, 2nn0addcli 11330 . . 3  |-  ( A  +  1 )  e. 
NN0
4 nn0opthlem1.2 . . 3  |-  C  e. 
NN0
53, 4nn0le2msqi 13054 . 2  |-  ( ( A  +  1 )  <_  C  <->  ( ( A  +  1 )  x.  ( A  + 
1 ) )  <_ 
( C  x.  C
) )
6 nn0ltp1le 11435 . . 3  |-  ( ( A  e.  NN0  /\  C  e.  NN0 )  -> 
( A  <  C  <->  ( A  +  1 )  <_  C ) )
71, 4, 6mp2an 708 . 2  |-  ( A  <  C  <->  ( A  +  1 )  <_  C )
81, 1nn0mulcli 11331 . . . . 5  |-  ( A  x.  A )  e. 
NN0
9 2nn0 11309 . . . . . 6  |-  2  e.  NN0
109, 1nn0mulcli 11331 . . . . 5  |-  ( 2  x.  A )  e. 
NN0
118, 10nn0addcli 11330 . . . 4  |-  ( ( A  x.  A )  +  ( 2  x.  A ) )  e. 
NN0
124, 4nn0mulcli 11331 . . . 4  |-  ( C  x.  C )  e. 
NN0
13 nn0ltp1le 11435 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( 2  x.  A ) )  e.  NN0  /\  ( C  x.  C
)  e.  NN0 )  ->  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  <  ( C  x.  C )  <->  ( ( ( A  x.  A )  +  ( 2  x.  A ) )  +  1 )  <_  ( C  x.  C ) ) )
1411, 12, 13mp2an 708 . . 3  |-  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C )  <->  ( (
( A  x.  A
)  +  ( 2  x.  A ) )  +  1 )  <_ 
( C  x.  C
) )
151nn0cni 11304 . . . . . . 7  |-  A  e.  CC
16 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
1715, 16binom2i 12974 . . . . . 6  |-  ( ( A  +  1 ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )
1815, 16addcli 10044 . . . . . . 7  |-  ( A  +  1 )  e.  CC
1918sqvali 12943 . . . . . 6  |-  ( ( A  +  1 ) ^ 2 )  =  ( ( A  + 
1 )  x.  ( A  +  1 ) )
2015sqvali 12943 . . . . . . . 8  |-  ( A ^ 2 )  =  ( A  x.  A
)
2120oveq1i 6660 . . . . . . 7  |-  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )
2216sqvali 12943 . . . . . . 7  |-  ( 1 ^ 2 )  =  ( 1  x.  1 )
2321, 22oveq12i 6662 . . . . . 6  |-  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )
2417, 19, 233eqtr3i 2652 . . . . 5  |-  ( ( A  +  1 )  x.  ( A  + 
1 ) )  =  ( ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )
2515mulid1i 10042 . . . . . . . 8  |-  ( A  x.  1 )  =  A
2625oveq2i 6661 . . . . . . 7  |-  ( 2  x.  ( A  x.  1 ) )  =  ( 2  x.  A
)
2726oveq2i 6661 . . . . . 6  |-  ( ( A  x.  A )  +  ( 2  x.  ( A  x.  1 ) ) )  =  ( ( A  x.  A )  +  ( 2  x.  A ) )
2816mulid1i 10042 . . . . . 6  |-  ( 1  x.  1 )  =  1
2927, 28oveq12i 6662 . . . . 5  |-  ( ( ( A  x.  A
)  +  ( 2  x.  ( A  x.  1 ) ) )  +  ( 1  x.  1 ) )  =  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  +  1 )
3024, 29eqtri 2644 . . . 4  |-  ( ( A  +  1 )  x.  ( A  + 
1 ) )  =  ( ( ( A  x.  A )  +  ( 2  x.  A
) )  +  1 )
3130breq1i 4660 . . 3  |-  ( ( ( A  +  1 )  x.  ( A  +  1 ) )  <_  ( C  x.  C )  <->  ( (
( A  x.  A
)  +  ( 2  x.  A ) )  +  1 )  <_ 
( C  x.  C
) )
3214, 31bitr4i 267 . 2  |-  ( ( ( A  x.  A
)  +  ( 2  x.  A ) )  <  ( C  x.  C )  <->  ( ( A  +  1 )  x.  ( A  + 
1 ) )  <_ 
( C  x.  C
) )
335, 7, 323bitr4i 292 1  |-  ( A  <  C  <->  ( ( A  x.  A )  +  ( 2  x.  A ) )  < 
( C  x.  C
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075   2c2 11070   NN0cn0 11292   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  nn0opthlem2  13056
  Copyright terms: Public domain W3C validator