MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiid Structured version   Visualization version   Unicode version

Theorem oiid 8446
Description: The order type of an ordinal under the  e. order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
oiid  |-  ( Ord 
A  -> OrdIso (  _E  ,  A )  =  (  _I  |`  A )
)

Proof of Theorem oiid
StepHypRef Expression
1 ordwe 5736 . 2  |-  ( Ord 
A  ->  _E  We  A )
2 epse 5097 . . 3  |-  _E Se  A
32a1i 11 . 2  |-  ( Ord 
A  ->  _E Se  A )
4 eqid 2622 . . . . . 6  |- OrdIso (  _E  ,  A )  = OrdIso
(  _E  ,  A
)
54oiiso2 8436 . . . . 5  |-  ( (  _E  We  A  /\  _E Se  A )  -> OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A
) ,  ran OrdIso (  _E  ,  A ) ) )
61, 2, 5sylancl 694 . . . 4  |-  ( Ord 
A  -> OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  ran OrdIso (  _E  ,  A ) ) )
7 ordsson 6989 . . . . . . 7  |-  ( Ord 
A  ->  A  C_  On )
84oismo 8445 . . . . . . 7  |-  ( A 
C_  On  ->  ( Smo OrdIso (  _E  ,  A
)  /\  ran OrdIso (  _E  ,  A )  =  A ) )
97, 8syl 17 . . . . . 6  |-  ( Ord 
A  ->  ( Smo OrdIso (  _E  ,  A )  /\  ran OrdIso (  _E  ,  A )  =  A ) )
109simprd 479 . . . . 5  |-  ( Ord 
A  ->  ran OrdIso (  _E  ,  A )  =  A )
11 isoeq5 6571 . . . . 5  |-  ( ran OrdIso (  _E  ,  A
)  =  A  -> 
(OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  ran OrdIso (  _E  ,  A ) )  <-> OrdIso (  _E  ,  A
)  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  A
) ) )
1210, 11syl 17 . . . 4  |-  ( Ord 
A  ->  (OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A
) ,  ran OrdIso (  _E  ,  A ) )  <-> OrdIso (  _E  ,  A
)  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  A
) ) )
136, 12mpbid 222 . . 3  |-  ( Ord 
A  -> OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  A
) )
144oicl 8434 . . . . . 6  |-  Ord  dom OrdIso (  _E  ,  A )
1514a1i 11 . . . . 5  |-  ( Ord 
A  ->  Ord  dom OrdIso (  _E  ,  A ) )
16 id 22 . . . . 5  |-  ( Ord 
A  ->  Ord  A )
17 ordiso2 8420 . . . . 5  |-  ( (OrdIso (  _E  ,  A
)  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  A
)  /\  Ord  dom OrdIso (  _E  ,  A )  /\  Ord  A )  ->  dom OrdIso (  _E  ,  A )  =  A )
1813, 15, 16, 17syl3anc 1326 . . . 4  |-  ( Ord 
A  ->  dom OrdIso (  _E  ,  A )  =  A )
19 isoeq4 6570 . . . 4  |-  ( dom OrdIso (  _E  ,  A
)  =  A  -> 
(OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A ) ,  A
)  <-> OrdIso (  _E  ,  A
)  Isom  _E  ,  _E  ( A ,  A ) ) )
2018, 19syl 17 . . 3  |-  ( Ord 
A  ->  (OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  A
) ,  A )  <-> OrdIso (  _E  ,  A
)  Isom  _E  ,  _E  ( A ,  A ) ) )
2113, 20mpbid 222 . 2  |-  ( Ord 
A  -> OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( A ,  A
) )
22 weniso 6604 . 2  |-  ( (  _E  We  A  /\  _E Se  A  /\ OrdIso (  _E  ,  A )  Isom  _E  ,  _E  ( A ,  A
) )  -> OrdIso (  _E  ,  A )  =  (  _I  |`  A ) )
231, 3, 21, 22syl3anc 1326 1  |-  ( Ord 
A  -> OrdIso (  _E  ,  A )  =  (  _I  |`  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    C_ wss 3574    _I cid 5023    _E cep 5028   Se wse 5071    We wwe 5072   dom cdm 5114   ran crn 5115    |` cres 5116   Ord word 5722   Oncon0 5723    Isom wiso 5889   Smo wsmo 7442  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-smo 7443  df-recs 7468  df-oi 8415
This theorem is referenced by:  hsmexlem5  9252
  Copyright terms: Public domain W3C validator