MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprsubg Structured version   Visualization version   Unicode version

Theorem opprsubg 18636
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubg  |-  (SubGrp `  R )  =  (SubGrp `  O )

Proof of Theorem opprsubg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . . . 6  |-  O  =  (oppr
`  R )
2 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbas 18629 . . . . 5  |-  ( Base `  R )  =  (
Base `  O )
4 eqid 2622 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
51, 4oppradd 18630 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  O )
63, 5grpprop 17438 . . . 4  |-  ( R  e.  Grp  <->  O  e.  Grp )
7 biid 251 . . . 4  |-  ( x 
C_  ( Base `  R
)  <->  x  C_  ( Base `  R ) )
8 vex 3203 . . . . . . 7  |-  x  e. 
_V
9 eqid 2622 . . . . . . . 8  |-  ( Rs  x )  =  ( Rs  x )
109, 2ressbas 15930 . . . . . . 7  |-  ( x  e.  _V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Rs  x ) ) )
118, 10ax-mp 5 . . . . . 6  |-  ( x  i^i  ( Base `  R
) )  =  (
Base `  ( Rs  x
) )
12 eqid 2622 . . . . . . . 8  |-  ( Os  x )  =  ( Os  x )
1312, 3ressbas 15930 . . . . . . 7  |-  ( x  e.  _V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Os  x ) ) )
148, 13ax-mp 5 . . . . . 6  |-  ( x  i^i  ( Base `  R
) )  =  (
Base `  ( Os  x
) )
1511, 14eqtr3i 2646 . . . . 5  |-  ( Base `  ( Rs  x ) )  =  ( Base `  ( Os  x ) )
169, 4ressplusg 15993 . . . . . . 7  |-  ( x  e.  _V  ->  ( +g  `  R )  =  ( +g  `  ( Rs  x ) ) )
1712, 5ressplusg 15993 . . . . . . 7  |-  ( x  e.  _V  ->  ( +g  `  R )  =  ( +g  `  ( Os  x ) ) )
1816, 17eqtr3d 2658 . . . . . 6  |-  ( x  e.  _V  ->  ( +g  `  ( Rs  x ) )  =  ( +g  `  ( Os  x ) ) )
198, 18ax-mp 5 . . . . 5  |-  ( +g  `  ( Rs  x ) )  =  ( +g  `  ( Os  x ) )
2015, 19grpprop 17438 . . . 4  |-  ( ( Rs  x )  e.  Grp  <->  ( Os  x )  e.  Grp )
216, 7, 203anbi123i 1251 . . 3  |-  ( ( R  e.  Grp  /\  x  C_  ( Base `  R
)  /\  ( Rs  x
)  e.  Grp )  <->  ( O  e.  Grp  /\  x  C_  ( Base `  R
)  /\  ( Os  x
)  e.  Grp )
)
222issubg 17594 . . 3  |-  ( x  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) )
233issubg 17594 . . 3  |-  ( x  e.  (SubGrp `  O
)  <->  ( O  e. 
Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) )
2421, 22, 233bitr4i 292 . 2  |-  ( x  e.  (SubGrp `  R
)  <->  x  e.  (SubGrp `  O ) )
2524eqriv 2619 1  |-  (SubGrp `  R )  =  (SubGrp `  O )
Colors of variables: wff setvar class
Syntax hints:    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   Grpcgrp 17422  SubGrpcsubg 17588  opprcoppr 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-oppr 18623
This theorem is referenced by:  opprsubrg  18801
  Copyright terms: Public domain W3C validator