Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnval2 Structured version   Visualization version   Unicode version

Theorem ovnval2 40759
Description: Value of the Lebesgue outer measure of a subset  A of the space of multidimensional real numbers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnval2.1  |-  ( ph  ->  X  e.  Fin )
ovnval2.2  |-  ( ph  ->  A  C_  ( RR  ^m  X ) )
ovnval2.3  |-  M  =  { z  e.  RR*  |  E. i  e.  ( ( ( RR  X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  ( i `  j
) ) `  k
)  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) }
Assertion
Ref Expression
ovnval2  |-  ( ph  ->  ( (voln* `  X ) `  A
)  =  if ( X  =  (/) ,  0 , inf ( M ,  RR* ,  <  ) ) )
Distinct variable groups:    A, i,
z    i, X, j, k, z
Allowed substitution hints:    ph( z, i, j, k)    A( j, k)    M( z, i, j, k)

Proof of Theorem ovnval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ovnval2.1 . . 3  |-  ( ph  ->  X  e.  Fin )
21ovnval 40755 . 2  |-  ( ph  ->  (voln* `  X )  =  ( y  e.  ~P ( RR  ^m  X )  |->  if ( X  =  (/) ,  0 , inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )
) ) )
3 biidd 252 . . . 4  |-  ( y  =  A  ->  ( X  =  (/)  <->  X  =  (/) ) )
4 sseq1 3626 . . . . . . . . 9  |-  ( y  =  A  ->  (
y  C_  U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  ( i `  j
) ) `  k
)  <->  A  C_  U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  ( i `  j
) ) `  k
) ) )
54anbi1d 741 . . . . . . . 8  |-  ( y  =  A  ->  (
( y  C_  U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  ( i `  j
) ) `  k
)  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) )  <->  ( A  C_ 
U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) ) )
65rexbidv 3052 . . . . . . 7  |-  ( y  =  A  ->  ( E. i  e.  (
( ( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  ( i `  j
) ) `  k
)  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) )  <->  E. i  e.  ( ( ( RR 
X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) ) )
76rabbidv 3189 . . . . . 6  |-  ( y  =  A  ->  { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) }  =  { z  e. 
RR*  |  E. i  e.  ( ( ( RR 
X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } )
8 ovnval2.3 . . . . . 6  |-  M  =  { z  e.  RR*  |  E. i  e.  ( ( ( RR  X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  ( ( [,)  o.  ( i `  j
) ) `  k
)  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) }
97, 8syl6eqr 2674 . . . . 5  |-  ( y  =  A  ->  { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) }  =  M )
109infeq1d 8383 . . . 4  |-  ( y  =  A  -> inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )  = inf ( M ,  RR* ,  <  ) )
113, 10ifbieq2d 4111 . . 3  |-  ( y  =  A  ->  if ( X  =  (/) ,  0 , inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )
)  =  if ( X  =  (/) ,  0 , inf ( M ,  RR* ,  <  ) ) )
1211adantl 482 . 2  |-  ( (
ph  /\  y  =  A )  ->  if ( X  =  (/) ,  0 , inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )
)  =  if ( X  =  (/) ,  0 , inf ( M ,  RR* ,  <  ) ) )
13 ovnval2.2 . . 3  |-  ( ph  ->  A  C_  ( RR  ^m  X ) )
14 ovexd 6680 . . . . 5  |-  ( ph  ->  ( RR  ^m  X
)  e.  _V )
1514, 13ssexd 4805 . . . 4  |-  ( ph  ->  A  e.  _V )
16 elpwg 4166 . . . 4  |-  ( A  e.  _V  ->  ( A  e.  ~P ( RR  ^m  X )  <->  A  C_  ( RR  ^m  X ) ) )
1715, 16syl 17 . . 3  |-  ( ph  ->  ( A  e.  ~P ( RR  ^m  X )  <-> 
A  C_  ( RR  ^m  X ) ) )
1813, 17mpbird 247 . 2  |-  ( ph  ->  A  e.  ~P ( RR  ^m  X ) )
19 c0ex 10034 . . . 4  |-  0  e.  _V
2019a1i 11 . . 3  |-  ( ph  ->  0  e.  _V )
218infeq1i 8384 . . . 4  |- inf ( M ,  RR* ,  <  )  = inf ( { z  e. 
RR*  |  E. i  e.  ( ( ( RR 
X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )
22 xrltso 11974 . . . . . 6  |-  <  Or  RR*
2322infex 8399 . . . . 5  |- inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )  e.  _V
2423a1i 11 . . . 4  |-  ( ph  -> inf ( { z  e. 
RR*  |  E. i  e.  ( ( ( RR 
X.  RR )  ^m  X )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  X  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  X  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )  e.  _V )
2521, 24syl5eqel 2705 . . 3  |-  ( ph  -> inf ( M ,  RR* ,  <  )  e.  _V )
2620, 25ifcld 4131 . 2  |-  ( ph  ->  if ( X  =  (/) ,  0 , inf ( M ,  RR* ,  <  ) )  e.  _V )
272, 12, 18, 26fvmptd 6288 1  |-  ( ph  ->  ( (voln* `  X ) `  A
)  =  if ( X  =  (/) ,  0 , inf ( M ,  RR* ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U_ciun 4520    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   X_cixp 7908   Fincfn 7955  infcinf 8347   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074   NNcn 11020   [,)cico 12177   prod_cprod 14635   volcvol 23232  Σ^csumge0 40579  voln*covoln 40750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-seq 12802  df-prod 14636  df-ovoln 40751
This theorem is referenced by:  ovn0val  40764  ovnn0val  40765  ovnval2b  40766  ovn0  40780  ovnhoilem1  40815  ovnovollem3  40872
  Copyright terms: Public domain W3C validator