Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0val Structured version   Visualization version   Unicode version

Theorem ovn0val 40764
Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
ovn0val.1  |-  ( ph  ->  A  C_  ( RR  ^m  (/) ) )
Assertion
Ref Expression
ovn0val  |-  ( ph  ->  ( (voln* `  (/) ) `  A )  =  0 )

Proof of Theorem ovn0val
Dummy variables  k 
i  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0fin 8188 . . . 4  |-  (/)  e.  Fin
21a1i 11 . . 3  |-  ( ph  -> 
(/)  e.  Fin )
3 ovn0val.1 . . 3  |-  ( ph  ->  A  C_  ( RR  ^m  (/) ) )
4 eqid 2622 . . 3  |-  { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  (/) )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  (/)  ( ( [,)  o.  ( i `
 j ) ) `
 k )  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  (/)  ( vol `  ( ( [,)  o.  ( i `  j
) ) `  k
) ) ) ) ) }  =  {
z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  (/) )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  (/)  ( ( [,)  o.  ( i `
 j ) ) `
 k )  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  (/)  ( vol `  ( ( [,)  o.  ( i `  j
) ) `  k
) ) ) ) ) }
52, 3, 4ovnval2 40759 . 2  |-  ( ph  ->  ( (voln* `  (/) ) `  A )  =  if ( (/)  =  (/) ,  0 , inf ( { z  e. 
RR*  |  E. i  e.  ( ( ( RR 
X.  RR )  ^m  (/) )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  (/)  ( ( [,)  o.  ( i `  j
) ) `  k
)  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  (/)  ( vol `  ( ( [,)  o.  ( i `  j
) ) `  k
) ) ) ) ) } ,  RR* ,  <  ) ) )
6 eqid 2622 . . . 4  |-  (/)  =  (/)
7 iftrue 4092 . . . 4  |-  ( (/)  =  (/)  ->  if ( (/)  =  (/) ,  0 , inf ( { z  e. 
RR*  |  E. i  e.  ( ( ( RR 
X.  RR )  ^m  (/) )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  (/)  ( ( [,)  o.  ( i `  j
) ) `  k
)  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  (/)  ( vol `  ( ( [,)  o.  ( i `  j
) ) `  k
) ) ) ) ) } ,  RR* ,  <  ) )  =  0 )
86, 7ax-mp 5 . . 3  |-  if (
(/)  =  (/) ,  0 , inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  (/) )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  (/)  ( ( [,)  o.  ( i `
 j ) ) `
 k )  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  (/)  ( vol `  ( ( [,)  o.  ( i `  j
) ) `  k
) ) ) ) ) } ,  RR* ,  <  ) )  =  0
98a1i 11 . 2  |-  ( ph  ->  if ( (/)  =  (/) ,  0 , inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  (/) )  ^m  NN ) ( A  C_  U_ j  e.  NN  X_ k  e.  (/)  ( ( [,)  o.  ( i `
 j ) ) `
 k )  /\  z  =  (Σ^ `  ( j  e.  NN  |->  prod_ k  e.  (/)  ( vol `  ( ( [,)  o.  ( i `  j
) ) `  k
) ) ) ) ) } ,  RR* ,  <  ) )  =  0 )
105, 9eqtrd 2656 1  |-  ( ph  ->  ( (voln* `  (/) ) `  A )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   ifcif 4086   U_ciun 4520    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   X_cixp 7908   Fincfn 7955  infcinf 8347   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074   NNcn 11020   [,)cico 12177   prod_cprod 14635   volcvol 23232  Σ^csumge0 40579  voln*covoln 40750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-seq 12802  df-prod 14636  df-ovoln 40751
This theorem is referenced by:  ovnssle  40775  ovn02  40782  ovnsubadd  40786  ovnhoi  40817  ovnlecvr2  40824  von0val  40885
  Copyright terms: Public domain W3C validator