Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lema Structured version   Visualization version   Unicode version

Theorem hgt750lema 30735
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750leme.o  |-  O  =  { z  e.  ZZ  |  -.  2  ||  z }
hgt750leme.n  |-  ( ph  ->  N  e.  NN )
hgt750lemb.2  |-  ( ph  ->  2  <_  N )
hgt750lemb.a  |-  A  =  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }
hgt750lema.f  |-  F  =  ( d  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  |->  ( d  o.  if ( a  =  0 ,  (  _I  |`  (
0..^ 3 ) ) ,  ( (pmTrsp `  ( 0..^ 3 ) ) `
 { a ,  0 } ) ) ) )
Assertion
Ref Expression
hgt750lema  |-  ( ph  -> 
sum_ n  e.  (
( NN (repr ` 
3 ) N ) 
\  ( ( O  i^i  Prime ) (repr ` 
3 ) N ) ) ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  <_  ( 3  x. 
sum_ n  e.  A  ( (Λ `  ( n `  0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) ) ) )
Distinct variable groups:    z, O    A, c, d, n    N, c, n    ph, c, n   
n, F    N, a,
d, c, n    O, a, c, d, n    ph, a,
d
Allowed substitution hints:    ph( z)    A( z, a)    F( z, a, c, d)    N( z)

Proof of Theorem hgt750lema
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 fzofi 12773 . . . 4  |-  ( 0..^ 3 )  e.  Fin
21a1i 11 . . 3  |-  ( ph  ->  ( 0..^ 3 )  e.  Fin )
3 hgt750leme.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
43nnnn0d 11351 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
5 3nn0 11310 . . . . . . 7  |-  3  e.  NN0
65a1i 11 . . . . . 6  |-  ( ph  ->  3  e.  NN0 )
7 ssid 3624 . . . . . . 7  |-  NN  C_  NN
87a1i 11 . . . . . 6  |-  ( ph  ->  NN  C_  NN )
94, 6, 8reprfi2 30701 . . . . 5  |-  ( ph  ->  ( NN (repr ` 
3 ) N )  e.  Fin )
10 ssrab2 3687 . . . . . 6  |-  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }  C_  ( NN (repr `  3 ) N )
1110a1i 11 . . . . 5  |-  ( ph  ->  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) }  C_  ( NN (repr `  3 ) N ) )
129, 11ssfid 8183 . . . 4  |-  ( ph  ->  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) }  e.  Fin )
1312adantr 481 . . 3  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 a )  e.  ( O  i^i  Prime ) }  e.  Fin )
14 vmaf 24845 . . . . . 6  |- Λ : NN --> RR
1514a1i 11 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  -> Λ : NN --> RR )
167a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  NN  C_  NN )
174nn0zd 11480 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
1817ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  N  e.  ZZ )
195a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  3  e.  NN0 )
20 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  n  e.  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )
2110, 20sseldi 3601 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  n  e.  ( NN (repr ` 
3 ) N ) )
2216, 18, 19, 21reprf 30690 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  n : ( 0..^ 3 ) --> NN )
23 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
2423tpid1 4303 . . . . . . . 8  |-  0  e.  { 0 ,  1 ,  2 }
25 fzo0to3tp 12554 . . . . . . . 8  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
2624, 25eleqtrri 2700 . . . . . . 7  |-  0  e.  ( 0..^ 3 )
2726a1i 11 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  0  e.  ( 0..^ 3 ) )
2822, 27ffvelrnd 6360 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
n `  0 )  e.  NN )
2915, 28ffvelrnd 6360 . . . 4  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (Λ `  ( n `  0
) )  e.  RR )
30 1ex 10035 . . . . . . . . . 10  |-  1  e.  _V
3130tpid2 4304 . . . . . . . . 9  |-  1  e.  { 0 ,  1 ,  2 }
3231, 25eleqtrri 2700 . . . . . . . 8  |-  1  e.  ( 0..^ 3 )
3332a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  1  e.  ( 0..^ 3 ) )
3422, 33ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
n `  1 )  e.  NN )
3515, 34ffvelrnd 6360 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (Λ `  ( n `  1
) )  e.  RR )
36 2ex 11092 . . . . . . . . . 10  |-  2  e.  _V
3736tpid3 4307 . . . . . . . . 9  |-  2  e.  { 0 ,  1 ,  2 }
3837, 25eleqtrri 2700 . . . . . . . 8  |-  2  e.  ( 0..^ 3 )
3938a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  2  e.  ( 0..^ 3 ) )
4022, 39ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
n `  2 )  e.  NN )
4115, 40ffvelrnd 6360 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (Λ `  ( n `  2
) )  e.  RR )
4235, 41remulcld 10070 . . . 4  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
(Λ `  ( n ` 
1 ) )  x.  (Λ `  ( n `  2 ) ) )  e.  RR )
4329, 42remulcld 10070 . . 3  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  e.  RR )
44 vmage0 24847 . . . . 5  |-  ( ( n `  0 )  e.  NN  ->  0  <_  (Λ `  ( n `  0 ) ) )
4528, 44syl 17 . . . 4  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  0  <_  (Λ `  ( n `  0 ) ) )
46 vmage0 24847 . . . . . 6  |-  ( ( n `  1 )  e.  NN  ->  0  <_  (Λ `  ( n `  1 ) ) )
4734, 46syl 17 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  0  <_  (Λ `  ( n `  1 ) ) )
48 vmage0 24847 . . . . . 6  |-  ( ( n `  2 )  e.  NN  ->  0  <_  (Λ `  ( n `  2 ) ) )
4940, 48syl 17 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  0  <_  (Λ `  ( n `  2 ) ) )
5035, 41, 47, 49mulge0d 10604 . . . 4  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  0  <_  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )
5129, 42, 45, 50mulge0d 10604 . . 3  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  0  <_  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
522, 13, 43, 51fsumiunle 29575 . 2  |-  ( ph  -> 
sum_ n  e.  U_  a  e.  ( 0..^ 3 ) { c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  <_  sum_ a  e.  ( 0..^ 3 ) sum_ n  e.  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
53 eqid 2622 . . . 4  |-  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }  =  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }
54 inss2 3834 . . . . . 6  |-  ( O  i^i  Prime )  C_  Prime
55 prmssnn 15390 . . . . . 6  |-  Prime  C_  NN
5654, 55sstri 3612 . . . . 5  |-  ( O  i^i  Prime )  C_  NN
5756a1i 11 . . . 4  |-  ( ph  ->  ( O  i^i  Prime ) 
C_  NN )
5853, 8, 57, 4, 6reprdifc 30705 . . 3  |-  ( ph  ->  ( ( NN (repr `  3 ) N )  \  ( ( O  i^i  Prime )
(repr `  3 ) N ) )  = 
U_ a  e.  ( 0..^ 3 ) { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) } )
5958sumeq1d 14431 . 2  |-  ( ph  -> 
sum_ n  e.  (
( NN (repr ` 
3 ) N ) 
\  ( ( O  i^i  Prime ) (repr ` 
3 ) N ) ) ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  =  sum_ n  e.  U_  a  e.  ( 0..^ 3 ) { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
60 ssrab2 3687 . . . . . . . 8  |-  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) }  C_  ( NN (repr `  3 ) N )
6160a1i 11 . . . . . . 7  |-  ( ph  ->  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }  C_  ( NN (repr `  3 ) N ) )
629, 61ssfid 8183 . . . . . 6  |-  ( ph  ->  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }  e.  Fin )
6314a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  -> Λ : NN --> RR )
647a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  NN  C_  NN )
6517adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  N  e.  ZZ )
665a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  3  e.  NN0 )
6761sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  n  e.  ( NN (repr `  3
) N ) )
6864, 65, 66, 67reprf 30690 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  n : ( 0..^ 3 ) --> NN )
6926a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  0  e.  ( 0..^ 3 ) )
7068, 69ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  ( n ` 
0 )  e.  NN )
7163, 70ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  (Λ `  ( n `  0 ) )  e.  RR )
7232a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  1  e.  ( 0..^ 3 ) )
7368, 72ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  ( n ` 
1 )  e.  NN )
7463, 73ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  (Λ `  ( n `  1 ) )  e.  RR )
7538a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  2  e.  ( 0..^ 3 ) )
7668, 75ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  ( n ` 
2 )  e.  NN )
7763, 76ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  (Λ `  ( n `  2 ) )  e.  RR )
7874, 77remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) )  e.  RR )
7971, 78remulcld 10070 . . . . . 6  |-  ( (
ph  /\  n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) } )  ->  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  e.  RR )
8062, 79fsumrecl 14465 . . . . 5  |-  ( ph  -> 
sum_ n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  e.  RR )
8180recnd 10068 . . . 4  |-  ( ph  -> 
sum_ n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  e.  CC )
82 fsumconst 14522 . . . 4  |-  ( ( ( 0..^ 3 )  e.  Fin  /\  sum_ n  e.  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  e.  CC )  ->  sum_ a  e.  ( 0..^ 3 ) sum_ n  e.  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  =  ( ( # `  ( 0..^ 3 ) )  x.  sum_ n  e.  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) ) )
832, 81, 82syl2anc 693 . . 3  |-  ( ph  -> 
sum_ a  e.  ( 0..^ 3 ) sum_ n  e.  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  =  ( ( # `  ( 0..^ 3 ) )  x.  sum_ n  e.  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) ) )
84 fveq1 6190 . . . . . . . 8  |-  ( n  =  ( F `  e )  ->  (
n `  0 )  =  ( ( F `
 e ) ` 
0 ) )
8584fveq2d 6195 . . . . . . 7  |-  ( n  =  ( F `  e )  ->  (Λ `  ( n `  0
) )  =  (Λ `  ( ( F `  e ) `  0
) ) )
86 fveq1 6190 . . . . . . . . 9  |-  ( n  =  ( F `  e )  ->  (
n `  1 )  =  ( ( F `
 e ) ` 
1 ) )
8786fveq2d 6195 . . . . . . . 8  |-  ( n  =  ( F `  e )  ->  (Λ `  ( n `  1
) )  =  (Λ `  ( ( F `  e ) `  1
) ) )
88 fveq1 6190 . . . . . . . . 9  |-  ( n  =  ( F `  e )  ->  (
n `  2 )  =  ( ( F `
 e ) ` 
2 ) )
8988fveq2d 6195 . . . . . . . 8  |-  ( n  =  ( F `  e )  ->  (Λ `  ( n `  2
) )  =  (Λ `  ( ( F `  e ) `  2
) ) )
9087, 89oveq12d 6668 . . . . . . 7  |-  ( n  =  ( F `  e )  ->  (
(Λ `  ( n ` 
1 ) )  x.  (Λ `  ( n `  2 ) ) )  =  ( (Λ `  ( ( F `  e ) `  1
) )  x.  (Λ `  ( ( F `  e ) `  2
) ) ) )
9185, 90oveq12d 6668 . . . . . 6  |-  ( n  =  ( F `  e )  ->  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  =  ( (Λ `  (
( F `  e
) `  0 )
)  x.  ( (Λ `  ( ( F `  e ) `  1
) )  x.  (Λ `  ( ( F `  e ) `  2
) ) ) ) )
92 3nn 11186 . . . . . . . . . 10  |-  3  e.  NN
9392a1i 11 . . . . . . . . 9  |-  ( ph  ->  3  e.  NN )
9493ralrimivw 2967 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ( 0..^ 3 ) 3  e.  NN )
9594r19.21bi 2932 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  3  e.  NN )
9617adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  N  e.  ZZ )
977a1i 11 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  NN  C_  NN )
98 simpr 477 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  a  e.  ( 0..^ 3 ) )
99 fveq1 6190 . . . . . . . . . 10  |-  ( c  =  d  ->  (
c `  0 )  =  ( d ` 
0 ) )
10099eleq1d 2686 . . . . . . . . 9  |-  ( c  =  d  ->  (
( c `  0
)  e.  ( O  i^i  Prime )  <->  ( d `  0 )  e.  ( O  i^i  Prime ) ) )
101100notbid 308 . . . . . . . 8  |-  ( c  =  d  ->  ( -.  ( c `  0
)  e.  ( O  i^i  Prime )  <->  -.  (
d `  0 )  e.  ( O  i^i  Prime ) ) )
102101cbvrabv 3199 . . . . . . 7  |-  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) }  =  { d  e.  ( NN (repr `  3 ) N )  |  -.  (
d `  0 )  e.  ( O  i^i  Prime ) }
103 fveq1 6190 . . . . . . . . . 10  |-  ( c  =  d  ->  (
c `  a )  =  ( d `  a ) )
104103eleq1d 2686 . . . . . . . . 9  |-  ( c  =  d  ->  (
( c `  a
)  e.  ( O  i^i  Prime )  <->  ( d `  a )  e.  ( O  i^i  Prime )
) )
105104notbid 308 . . . . . . . 8  |-  ( c  =  d  ->  ( -.  ( c `  a
)  e.  ( O  i^i  Prime )  <->  -.  (
d `  a )  e.  ( O  i^i  Prime ) ) )
106105cbvrabv 3199 . . . . . . 7  |-  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }  =  { d  e.  ( NN (repr `  3 ) N )  |  -.  (
d `  a )  e.  ( O  i^i  Prime ) }
107 eqid 2622 . . . . . . 7  |-  if ( a  =  0 ,  (  _I  |`  (
0..^ 3 ) ) ,  ( (pmTrsp `  ( 0..^ 3 ) ) `
 { a ,  0 } ) )  =  if ( a  =  0 ,  (  _I  |`  ( 0..^ 3 ) ) ,  ( (pmTrsp `  (
0..^ 3 ) ) `
 { a ,  0 } ) )
108 hgt750lema.f . . . . . . 7  |-  F  =  ( d  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  |->  ( d  o.  if ( a  =  0 ,  (  _I  |`  (
0..^ 3 ) ) ,  ( (pmTrsp `  ( 0..^ 3 ) ) `
 { a ,  0 } ) ) ) )
10995, 96, 97, 98, 102, 106, 107, 108reprpmtf1o 30704 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  F : {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) } -1-1-onto-> { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) } )
110 eqidd 2623 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  e  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  ( F `  e )  =  ( F `  e ) )
11179adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) } )  ->  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  e.  RR )
112111recnd 10068 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) } )  ->  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  e.  CC )
11391, 13, 109, 110, 112fsumf1o 14454 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  sum_ n  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  = 
sum_ e  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( ( F `
 e ) ` 
0 ) )  x.  ( (Λ `  (
( F `  e
) `  1 )
)  x.  (Λ `  (
( F `  e
) `  2 )
) ) ) )
114 fveq2 6191 . . . . . . . . . 10  |-  ( e  =  n  ->  ( F `  e )  =  ( F `  n ) )
115114fveq1d 6193 . . . . . . . . 9  |-  ( e  =  n  ->  (
( F `  e
) `  0 )  =  ( ( F `
 n ) ` 
0 ) )
116115fveq2d 6195 . . . . . . . 8  |-  ( e  =  n  ->  (Λ `  ( ( F `  e ) `  0
) )  =  (Λ `  ( ( F `  n ) `  0
) ) )
117114fveq1d 6193 . . . . . . . . . 10  |-  ( e  =  n  ->  (
( F `  e
) `  1 )  =  ( ( F `
 n ) ` 
1 ) )
118117fveq2d 6195 . . . . . . . . 9  |-  ( e  =  n  ->  (Λ `  ( ( F `  e ) `  1
) )  =  (Λ `  ( ( F `  n ) `  1
) ) )
119114fveq1d 6193 . . . . . . . . . 10  |-  ( e  =  n  ->  (
( F `  e
) `  2 )  =  ( ( F `
 n ) ` 
2 ) )
120119fveq2d 6195 . . . . . . . . 9  |-  ( e  =  n  ->  (Λ `  ( ( F `  e ) `  2
) )  =  (Λ `  ( ( F `  n ) `  2
) ) )
121118, 120oveq12d 6668 . . . . . . . 8  |-  ( e  =  n  ->  (
(Λ `  ( ( F `
 e ) ` 
1 ) )  x.  (Λ `  ( ( F `  e ) `  2 ) ) )  =  ( (Λ `  ( ( F `  n ) `  1
) )  x.  (Λ `  ( ( F `  n ) `  2
) ) ) )
122116, 121oveq12d 6668 . . . . . . 7  |-  ( e  =  n  ->  (
(Λ `  ( ( F `
 e ) ` 
0 ) )  x.  ( (Λ `  (
( F `  e
) `  1 )
)  x.  (Λ `  (
( F `  e
) `  2 )
) ) )  =  ( (Λ `  (
( F `  n
) `  0 )
)  x.  ( (Λ `  ( ( F `  n ) `  1
) )  x.  (Λ `  ( ( F `  n ) `  2
) ) ) ) )
123122cbvsumv 14426 . . . . . 6  |-  sum_ e  e.  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
( F `  e
) `  0 )
)  x.  ( (Λ `  ( ( F `  e ) `  1
) )  x.  (Λ `  ( ( F `  e ) `  2
) ) ) )  =  sum_ n  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( ( F `
 n ) ` 
0 ) )  x.  ( (Λ `  (
( F `  n
) `  1 )
)  x.  (Λ `  (
( F `  n
) `  2 )
) ) )
124123a1i 11 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  sum_ e  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( ( F `
 e ) ` 
0 ) )  x.  ( (Λ `  (
( F `  e
) `  1 )
)  x.  (Λ `  (
( F `  e
) `  2 )
) ) )  = 
sum_ n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
( F `  n
) `  0 )
)  x.  ( (Λ `  ( ( F `  n ) `  1
) )  x.  (Λ `  ( ( F `  n ) `  2
) ) ) ) )
125 ovexd 6680 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
0..^ 3 )  e. 
_V )
12698adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  a  e.  ( 0..^ 3 ) )
127125, 126, 27, 107pmtridf1o 29856 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  if ( a  =  0 ,  (  _I  |`  (
0..^ 3 ) ) ,  ( (pmTrsp `  ( 0..^ 3 ) ) `
 { a ,  0 } ) ) : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 ) )
128108, 127, 22, 15, 20hgt750lemg 30732 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( 0..^ 3 ) )  /\  n  e. 
{ c  e.  ( NN (repr `  3
) N )  |  -.  ( c `  a )  e.  ( O  i^i  Prime ) } )  ->  (
(Λ `  ( ( F `
 n ) ` 
0 ) )  x.  ( (Λ `  (
( F `  n
) `  1 )
)  x.  (Λ `  (
( F `  n
) `  2 )
) ) )  =  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
129128sumeq2dv 14433 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  sum_ n  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( ( F `
 n ) ` 
0 ) )  x.  ( (Λ `  (
( F `  n
) `  1 )
)  x.  (Λ `  (
( F `  n
) `  2 )
) ) )  = 
sum_ n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
130113, 124, 1293eqtrrd 2661 . . . 4  |-  ( (
ph  /\  a  e.  ( 0..^ 3 ) )  ->  sum_ n  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  a
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  = 
sum_ n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
131130sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ a  e.  ( 0..^ 3 ) sum_ n  e.  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  =  sum_ a  e.  ( 0..^ 3 ) sum_ n  e.  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
132 hashfzo0 13217 . . . . . . 7  |-  ( 3  e.  NN0  ->  ( # `  ( 0..^ 3 ) )  =  3 )
1335, 132ax-mp 5 . . . . . 6  |-  ( # `  ( 0..^ 3 ) )  =  3
134133a1i 11 . . . . 5  |-  ( ph  ->  ( # `  (
0..^ 3 ) )  =  3 )
135134eqcomd 2628 . . . 4  |-  ( ph  ->  3  =  ( # `  ( 0..^ 3 ) ) )
136 hgt750lemb.a . . . . . 6  |-  A  =  { c  e.  ( NN (repr `  3
) N )  |  -.  ( c ` 
0 )  e.  ( O  i^i  Prime ) }
137136a1i 11 . . . . 5  |-  ( ph  ->  A  =  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) } )
138137sumeq1d 14431 . . . 4  |-  ( ph  -> 
sum_ n  e.  A  ( (Λ `  ( n `  0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) )  = 
sum_ n  e.  { c  e.  ( NN (repr `  3 ) N )  |  -.  (
c `  0 )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
139135, 138oveq12d 6668 . . 3  |-  ( ph  ->  ( 3  x.  sum_ n  e.  A  ( (Λ `  ( n `  0
) )  x.  (
(Λ `  ( n ` 
1 ) )  x.  (Λ `  ( n `  2 ) ) ) ) )  =  ( ( # `  (
0..^ 3 ) )  x.  sum_ n  e.  {
c  e.  ( NN (repr `  3 ) N )  |  -.  ( c `  0
)  e.  ( O  i^i  Prime ) }  (
(Λ `  ( n ` 
0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) ) ) )
14083, 131, 1393eqtr4rd 2667 . 2  |-  ( ph  ->  ( 3  x.  sum_ n  e.  A  ( (Λ `  ( n `  0
) )  x.  (
(Λ `  ( n ` 
1 ) )  x.  (Λ `  ( n `  2 ) ) ) ) )  = 
sum_ a  e.  ( 0..^ 3 ) sum_ n  e.  { c  e.  ( NN (repr ` 
3 ) N )  |  -.  ( c `
 a )  e.  ( O  i^i  Prime ) }  ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) ) )
14152, 59, 1403brtr4d 4685 1  |-  ( ph  -> 
sum_ n  e.  (
( NN (repr ` 
3 ) N ) 
\  ( ( O  i^i  Prime ) (repr ` 
3 ) N ) ) ( (Λ `  (
n `  0 )
)  x.  ( (Λ `  ( n `  1
) )  x.  (Λ `  ( n `  2
) ) ) )  <_  ( 3  x. 
sum_ n  e.  A  ( (Λ `  ( n `  0 ) )  x.  ( (Λ `  (
n `  1 )
)  x.  (Λ `  (
n `  2 )
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   {cpr 4179   {ctp 4181   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   #chash 13117   sum_csu 14416    || cdvds 14983   Primecprime 15385  pmTrspcpmtr 17861  Λcvma 24818  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-pmtr 17862  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824  df-repr 30687
This theorem is referenced by:  hgt750leme  30736
  Copyright terms: Public domain W3C validator