| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmplem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for ptcmp 21862. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmp.1 |
|
| ptcmp.2 |
|
| ptcmp.3 |
|
| ptcmp.4 |
|
| ptcmp.5 |
|
| Ref | Expression |
|---|---|
| ptcmplem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmp.3 |
. . . . . . 7
| |
| 2 | ptcmp.4 |
. . . . . . . 8
| |
| 3 | ffn 6045 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
|
| 5 | eqid 2622 |
. . . . . . . 8
| |
| 6 | 5 | ptval 21373 |
. . . . . . 7
|
| 7 | 1, 4, 6 | syl2anc 693 |
. . . . . 6
|
| 8 | cmptop 21198 |
. . . . . . . . . . 11
| |
| 9 | 8 | ssriv 3607 |
. . . . . . . . . 10
|
| 10 | fss 6056 |
. . . . . . . . . 10
| |
| 11 | 2, 9, 10 | sylancl 694 |
. . . . . . . . 9
|
| 12 | ptcmp.2 |
. . . . . . . . . 10
| |
| 13 | 5, 12 | ptbasfi 21384 |
. . . . . . . . 9
|
| 14 | 1, 11, 13 | syl2anc 693 |
. . . . . . . 8
|
| 15 | uncom 3757 |
. . . . . . . . . 10
| |
| 16 | ptcmp.1 |
. . . . . . . . . . . 12
| |
| 17 | 16 | rneqi 5352 |
. . . . . . . . . . 11
|
| 18 | 17 | uneq2i 3764 |
. . . . . . . . . 10
|
| 19 | 15, 18 | eqtri 2644 |
. . . . . . . . 9
|
| 20 | 19 | fveq2i 6194 |
. . . . . . . 8
|
| 21 | 14, 20 | syl6eqr 2674 |
. . . . . . 7
|
| 22 | 21 | fveq2d 6195 |
. . . . . 6
|
| 23 | 7, 22 | eqtrd 2656 |
. . . . 5
|
| 24 | 23 | unieqd 4446 |
. . . 4
|
| 25 | fibas 20781 |
. . . . 5
| |
| 26 | unitg 20771 |
. . . . 5
| |
| 27 | 25, 26 | ax-mp 5 |
. . . 4
|
| 28 | 24, 27 | syl6eq 2672 |
. . 3
|
| 29 | eqid 2622 |
. . . . . 6
| |
| 30 | 29 | ptuni 21397 |
. . . . 5
|
| 31 | 1, 11, 30 | syl2anc 693 |
. . . 4
|
| 32 | 12, 31 | syl5eq 2668 |
. . 3
|
| 33 | ptcmp.5 |
. . . . . . 7
| |
| 34 | pwexg 4850 |
. . . . . . 7
| |
| 35 | 33, 34 | syl 17 |
. . . . . 6
|
| 36 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 37 | 36 | mptpreima 5628 |
. . . . . . . . . . 11
|
| 38 | ssrab2 3687 |
. . . . . . . . . . 11
| |
| 39 | 37, 38 | eqsstri 3635 |
. . . . . . . . . 10
|
| 40 | 33 | adantr 481 |
. . . . . . . . . . 11
|
| 41 | elpw2g 4827 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . 10
|
| 43 | 39, 42 | mpbiri 248 |
. . . . . . . . 9
|
| 44 | 43 | ralrimivva 2971 |
. . . . . . . 8
|
| 45 | 16 | fmpt2x 7236 |
. . . . . . . 8
|
| 46 | 44, 45 | sylib 208 |
. . . . . . 7
|
| 47 | frn 6053 |
. . . . . . 7
| |
| 48 | 46, 47 | syl 17 |
. . . . . 6
|
| 49 | 35, 48 | ssexd 4805 |
. . . . 5
|
| 50 | snex 4908 |
. . . . 5
| |
| 51 | unexg 6959 |
. . . . 5
| |
| 52 | 49, 50, 51 | sylancl 694 |
. . . 4
|
| 53 | fiuni 8334 |
. . . 4
| |
| 54 | 52, 53 | syl 17 |
. . 3
|
| 55 | 28, 32, 54 | 3eqtr4d 2666 |
. 2
|
| 56 | 55, 23 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-dom 7957 df-fin 7959 df-fi 8317 df-topgen 16104 df-pt 16105 df-top 20699 df-bases 20750 df-cmp 21190 |
| This theorem is referenced by: ptcmplem5 21860 |
| Copyright terms: Public domain | W3C validator |