MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r111 Structured version   Visualization version   Unicode version

Theorem r111 8638
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.)
Assertion
Ref Expression
r111  |-  R1 : On
-1-1-> _V

Proof of Theorem r111
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1fnon 8630 . . 3  |-  R1  Fn  On
2 dffn2 6047 . . 3  |-  ( R1  Fn  On  <->  R1 : On
--> _V )
31, 2mpbi 220 . 2  |-  R1 : On
--> _V
4 eloni 5733 . . . . 5  |-  ( x  e.  On  ->  Ord  x )
5 eloni 5733 . . . . 5  |-  ( y  e.  On  ->  Ord  y )
6 ordtri3or 5755 . . . . 5  |-  ( ( Ord  x  /\  Ord  y )  ->  (
x  e.  y  \/  x  =  y  \/  y  e.  x ) )
74, 5, 6syl2an 494 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
8 sdomirr 8097 . . . . . . . . 9  |-  -.  ( R1 `  y )  ~< 
( R1 `  y
)
9 r1sdom 8637 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  x  e.  y )  ->  ( R1 `  x
)  ~<  ( R1 `  y ) )
10 breq1 4656 . . . . . . . . . 10  |-  ( ( R1 `  x )  =  ( R1 `  y )  ->  (
( R1 `  x
)  ~<  ( R1 `  y )  <->  ( R1 `  y )  ~<  ( R1 `  y ) ) )
119, 10syl5ibcom 235 . . . . . . . . 9  |-  ( ( y  e.  On  /\  x  e.  y )  ->  ( ( R1 `  x )  =  ( R1 `  y )  ->  ( R1 `  y )  ~<  ( R1 `  y ) ) )
128, 11mtoi 190 . . . . . . . 8  |-  ( ( y  e.  On  /\  x  e.  y )  ->  -.  ( R1 `  x )  =  ( R1 `  y ) )
13123adant1 1079 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  e.  y )  ->  -.  ( R1 `  x )  =  ( R1 `  y ) )
1413pm2.21d 118 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  e.  y )  ->  (
( R1 `  x
)  =  ( R1
`  y )  ->  x  =  y )
)
15143expia 1267 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  ->  ( ( R1
`  x )  =  ( R1 `  y
)  ->  x  =  y ) ) )
16 ax-1 6 . . . . . 6  |-  ( x  =  y  ->  (
( R1 `  x
)  =  ( R1
`  y )  ->  x  =  y )
)
1716a1i 11 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  =  y  ->  ( ( R1
`  x )  =  ( R1 `  y
)  ->  x  =  y ) ) )
18 r1sdom 8637 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( R1 `  y
)  ~<  ( R1 `  x ) )
19 breq2 4657 . . . . . . . . . 10  |-  ( ( R1 `  x )  =  ( R1 `  y )  ->  (
( R1 `  y
)  ~<  ( R1 `  x )  <->  ( R1 `  y )  ~<  ( R1 `  y ) ) )
2018, 19syl5ibcom 235 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( R1 `  x )  =  ( R1 `  y )  ->  ( R1 `  y )  ~<  ( R1 `  y ) ) )
218, 20mtoi 190 . . . . . . . 8  |-  ( ( x  e.  On  /\  y  e.  x )  ->  -.  ( R1 `  x )  =  ( R1 `  y ) )
22213adant2 1080 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On  /\  y  e.  x )  ->  -.  ( R1 `  x )  =  ( R1 `  y ) )
2322pm2.21d 118 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On  /\  y  e.  x )  ->  (
( R1 `  x
)  =  ( R1
`  y )  ->  x  =  y )
)
24233expia 1267 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( y  e.  x  ->  ( ( R1 `  x )  =  ( R1 `  y )  ->  x  =  y ) ) )
2515, 17, 243jaod 1392 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  (
( R1 `  x
)  =  ( R1
`  y )  ->  x  =  y )
) )
267, 25mpd 15 . . 3  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( R1 `  x )  =  ( R1 `  y )  ->  x  =  y ) )
2726rgen2a 2977 . 2  |-  A. x  e.  On  A. y  e.  On  ( ( R1
`  x )  =  ( R1 `  y
)  ->  x  =  y )
28 dff13 6512 . 2  |-  ( R1 : On -1-1-> _V  <->  ( R1 : On --> _V  /\  A. x  e.  On  A. y  e.  On  ( ( R1
`  x )  =  ( R1 `  y
)  ->  x  =  y ) ) )
293, 27, 28mpbir2an 955 1  |-  R1 : On
-1-1-> _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   class class class wbr 4653   Ord word 5722   Oncon0 5723    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   ` cfv 5888    ~< csdm 7954   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-r1 8627
This theorem is referenced by:  tskinf  9591  grothomex  9651  rankeq1o  32278  elhf  32281  hfninf  32293
  Copyright terms: Public domain W3C validator