MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Structured version   Visualization version   Unicode version

Theorem rankelb 8687
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 8668 . . . . . 6  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  U. ( R1
" On ) )
21sseld 3602 . . . . 5  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  A  e.  U. ( R1 " On ) ) )
3 rankidn 8685 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
42, 3syl6 35 . . . 4  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) ) )
54imp 445 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) )
6 rankon 8658 . . . . 5  |-  ( rank `  B )  e.  On
7 rankon 8658 . . . . 5  |-  ( rank `  A )  e.  On
8 ontri1 5757 . . . . 5  |-  ( ( ( rank `  B
)  e.  On  /\  ( rank `  A )  e.  On )  ->  (
( rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
) )
96, 7, 8mp2an 708 . . . 4  |-  ( (
rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
)
10 rankdmr1 8664 . . . . . 6  |-  ( rank `  B )  e.  dom  R1
11 rankdmr1 8664 . . . . . 6  |-  ( rank `  A )  e.  dom  R1
12 r1ord3g 8642 . . . . . 6  |-  ( ( ( rank `  B
)  e.  dom  R1  /\  ( rank `  A
)  e.  dom  R1 )  ->  ( ( rank `  B )  C_  ( rank `  A )  -> 
( R1 `  ( rank `  B ) ) 
C_  ( R1 `  ( rank `  A )
) ) )
1310, 11, 12mp2an 708 . . . . 5  |-  ( (
rank `  B )  C_  ( rank `  A
)  ->  ( R1 `  ( rank `  B
) )  C_  ( R1 `  ( rank `  A
) ) )
14 r1rankidb 8667 . . . . . . 7  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  ( R1 `  ( rank `  B )
) )
1514sselda 3603 . . . . . 6  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  A  e.  ( R1
`  ( rank `  B
) ) )
16 ssel 3597 . . . . . 6  |-  ( ( R1 `  ( rank `  B ) )  C_  ( R1 `  ( rank `  A ) )  -> 
( A  e.  ( R1 `  ( rank `  B ) )  ->  A  e.  ( R1 `  ( rank `  A
) ) ) )
1715, 16syl5com 31 . . . . 5  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( R1 `  ( rank `  B )
)  C_  ( R1 `  ( rank `  A
) )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
1813, 17syl5 34 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( rank `  B
)  C_  ( rank `  A )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
199, 18syl5bir 233 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( -.  ( rank `  A )  e.  (
rank `  B )  ->  A  e.  ( R1
`  ( rank `  A
) ) ) )
205, 19mt3d 140 . 2  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( rank `  A
)  e.  ( rank `  B ) )
2120ex 450 1  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    C_ wss 3574   U.cuni 4436   dom cdm 5114   "cima 5117   Oncon0 5723   ` cfv 5888   R1cr1 8625   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  wfelirr  8688  rankval3b  8689  rankel  8702  rankunb  8713  rankuni2b  8716  rankcf  9599
  Copyright terms: Public domain W3C validator