| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankval3b | Structured version Visualization version Unicode version | ||
| Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankval3b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 8658 |
. . . . . . . . . 10
| |
| 2 | simprl 794 |
. . . . . . . . . 10
| |
| 3 | ontri1 5757 |
. . . . . . . . . 10
| |
| 4 | 1, 2, 3 | sylancr 695 |
. . . . . . . . 9
|
| 5 | 4 | con2bid 344 |
. . . . . . . 8
|
| 6 | r1elssi 8668 |
. . . . . . . . . . . . . . . . . 18
| |
| 7 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . 17
|
| 8 | 7 | sselda 3603 |
. . . . . . . . . . . . . . . 16
|
| 9 | rankdmr1 8664 |
. . . . . . . . . . . . . . . . . 18
| |
| 10 | r1funlim 8629 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 11 | 10 | simpri 478 |
. . . . . . . . . . . . . . . . . . 19
|
| 12 | limord 5784 |
. . . . . . . . . . . . . . . . . . 19
| |
| 13 | ordtr1 5767 |
. . . . . . . . . . . . . . . . . . 19
| |
| 14 | 11, 12, 13 | mp2b 10 |
. . . . . . . . . . . . . . . . . 18
|
| 15 | 9, 14 | mpan2 707 |
. . . . . . . . . . . . . . . . 17
|
| 16 | 15 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
|
| 17 | rankr1ag 8665 |
. . . . . . . . . . . . . . . 16
| |
| 18 | 8, 16, 17 | syl2anc 693 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | ralbidva 2985 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | biimpar 502 |
. . . . . . . . . . . . 13
|
| 21 | 20 | an32s 846 |
. . . . . . . . . . . 12
|
| 22 | dfss3 3592 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | sylibr 224 |
. . . . . . . . . . 11
|
| 24 | simpll 790 |
. . . . . . . . . . . 12
| |
| 25 | 15 | adantl 482 |
. . . . . . . . . . . 12
|
| 26 | rankr1bg 8666 |
. . . . . . . . . . . 12
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . . . . . . 11
|
| 28 | 23, 27 | mpbid 222 |
. . . . . . . . . 10
|
| 29 | 28 | ex 450 |
. . . . . . . . 9
|
| 30 | 29 | adantrl 752 |
. . . . . . . 8
|
| 31 | 5, 30 | sylbird 250 |
. . . . . . 7
|
| 32 | 31 | pm2.18d 124 |
. . . . . 6
|
| 33 | 32 | ex 450 |
. . . . 5
|
| 34 | 33 | alrimiv 1855 |
. . . 4
|
| 35 | ssintab 4494 |
. . . 4
| |
| 36 | 34, 35 | sylibr 224 |
. . 3
|
| 37 | df-rab 2921 |
. . . 4
| |
| 38 | 37 | inteqi 4479 |
. . 3
|
| 39 | 36, 38 | syl6sseqr 3652 |
. 2
|
| 40 | rankelb 8687 |
. . . 4
| |
| 41 | 40 | ralrimiv 2965 |
. . 3
|
| 42 | eleq2 2690 |
. . . . 5
| |
| 43 | 42 | ralbidv 2986 |
. . . 4
|
| 44 | 43 | onintss 5775 |
. . 3
|
| 45 | 1, 41, 44 | mpsyl 68 |
. 2
|
| 46 | 39, 45 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-r1 8627 df-rank 8628 |
| This theorem is referenced by: ranksnb 8690 rankonidlem 8691 rankval3 8703 rankunb 8713 rankuni2b 8716 tcrank 8747 |
| Copyright terms: Public domain | W3C validator |