Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgspncl Structured version   Visualization version   Unicode version

Theorem rgspncl 37739
Description: The ring-span of a set is a subring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
rgspnval.r  |-  ( ph  ->  R  e.  Ring )
rgspnval.b  |-  ( ph  ->  B  =  ( Base `  R ) )
rgspnval.ss  |-  ( ph  ->  A  C_  B )
rgspnval.n  |-  ( ph  ->  N  =  (RingSpan `  R
) )
rgspnval.sp  |-  ( ph  ->  U  =  ( N `
 A ) )
Assertion
Ref Expression
rgspncl  |-  ( ph  ->  U  e.  (SubRing `  R
) )

Proof of Theorem rgspncl
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 rgspnval.r . . 3  |-  ( ph  ->  R  e.  Ring )
2 rgspnval.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
3 rgspnval.ss . . 3  |-  ( ph  ->  A  C_  B )
4 rgspnval.n . . 3  |-  ( ph  ->  N  =  (RingSpan `  R
) )
5 rgspnval.sp . . 3  |-  ( ph  ->  U  =  ( N `
 A ) )
61, 2, 3, 4, 5rgspnval 37738 . 2  |-  ( ph  ->  U  =  |^| { t  e.  (SubRing `  R
)  |  A  C_  t } )
7 ssrab2 3687 . . 3  |-  { t  e.  (SubRing `  R
)  |  A  C_  t }  C_  (SubRing `  R
)
8 eqid 2622 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
98subrgid 18782 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  (SubRing `  R ) )
101, 9syl 17 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  (SubRing `  R
) )
112, 10eqeltrd 2701 . . . . 5  |-  ( ph  ->  B  e.  (SubRing `  R
) )
12 sseq2 3627 . . . . . 6  |-  ( t  =  B  ->  ( A  C_  t  <->  A  C_  B
) )
1312rspcev 3309 . . . . 5  |-  ( ( B  e.  (SubRing `  R
)  /\  A  C_  B
)  ->  E. t  e.  (SubRing `  R ) A  C_  t )
1411, 3, 13syl2anc 693 . . . 4  |-  ( ph  ->  E. t  e.  (SubRing `  R ) A  C_  t )
15 rabn0 3958 . . . 4  |-  ( { t  e.  (SubRing `  R
)  |  A  C_  t }  =/=  (/)  <->  E. t  e.  (SubRing `  R ) A  C_  t )
1614, 15sylibr 224 . . 3  |-  ( ph  ->  { t  e.  (SubRing `  R )  |  A  C_  t }  =/=  (/) )
17 subrgint 18802 . . 3  |-  ( ( { t  e.  (SubRing `  R )  |  A  C_  t }  C_  (SubRing `  R )  /\  {
t  e.  (SubRing `  R
)  |  A  C_  t }  =/=  (/) )  ->  |^| { t  e.  (SubRing `  R )  |  A  C_  t }  e.  (SubRing `  R ) )
187, 16, 17sylancr 695 . 2  |-  ( ph  ->  |^| { t  e.  (SubRing `  R )  |  A  C_  t }  e.  (SubRing `  R
) )
196, 18eqeltrd 2701 1  |-  ( ph  ->  U  e.  (SubRing `  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   |^|cint 4475   ` cfv 5888   Basecbs 15857   Ringcrg 18547  SubRingcsubrg 18776  RingSpancrgspn 18777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-rgspn 18779
This theorem is referenced by:  rngunsnply  37743
  Copyright terms: Public domain W3C validator