Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcrescrhmALTV Structured version   Visualization version   Unicode version

Theorem rngcrescrhmALTV 42103
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u  |-  ( ph  ->  U  e.  V )
rngcrescrhmALTV.c  |-  C  =  (RngCatALTV `  U )
rngcrescrhmALTV.r  |-  ( ph  ->  R  =  ( Ring 
i^i  U ) )
rngcrescrhmALTV.h  |-  H  =  ( RingHom  |`  ( R  X.  R ) )
Assertion
Ref Expression
rngcrescrhmALTV  |-  ( ph  ->  ( C  |`cat  H )  =  ( ( Cs  R ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )

Proof of Theorem rngcrescrhmALTV
StepHypRef Expression
1 eqid 2622 . 2  |-  ( C  |`cat 
H )  =  ( C  |`cat  H )
2 rngcrescrhmALTV.c . . . 4  |-  C  =  (RngCatALTV `  U )
3 fvex 6201 . . . 4  |-  (RngCatALTV `  U
)  e.  _V
42, 3eqeltri 2697 . . 3  |-  C  e. 
_V
54a1i 11 . 2  |-  ( ph  ->  C  e.  _V )
6 rngcrescrhmALTV.r . . . 4  |-  ( ph  ->  R  =  ( Ring 
i^i  U ) )
7 incom 3805 . . . 4  |-  ( Ring 
i^i  U )  =  ( U  i^i  Ring )
86, 7syl6eq 2672 . . 3  |-  ( ph  ->  R  =  ( U  i^i  Ring ) )
9 rngcrescrhmALTV.u . . . 4  |-  ( ph  ->  U  e.  V )
10 inex1g 4801 . . . 4  |-  ( U  e.  V  ->  ( U  i^i  Ring )  e.  _V )
119, 10syl 17 . . 3  |-  ( ph  ->  ( U  i^i  Ring )  e.  _V )
128, 11eqeltrd 2701 . 2  |-  ( ph  ->  R  e.  _V )
13 inss1 3833 . . . . . 6  |-  ( Ring 
i^i  U )  C_  Ring
146, 13syl6eqss 3655 . . . . 5  |-  ( ph  ->  R  C_  Ring )
15 xpss12 5225 . . . . 5  |-  ( ( R  C_  Ring  /\  R  C_ 
Ring )  ->  ( R  X.  R )  C_  ( Ring  X.  Ring )
)
1614, 14, 15syl2anc 693 . . . 4  |-  ( ph  ->  ( R  X.  R
)  C_  ( Ring  X. 
Ring ) )
17 rhmfn 41918 . . . . 5  |- RingHom  Fn  ( Ring  X.  Ring )
18 fnssresb 6003 . . . . 5  |-  ( RingHom  Fn  ( Ring  X.  Ring )  ->  ( ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R )  <->  ( R  X.  R )  C_  ( Ring  X.  Ring ) ) )
1917, 18mp1i 13 . . . 4  |-  ( ph  ->  ( ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R )  <->  ( R  X.  R )  C_  ( Ring  X.  Ring ) ) )
2016, 19mpbird 247 . . 3  |-  ( ph  ->  ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R
) )
21 rngcrescrhmALTV.h . . . 4  |-  H  =  ( RingHom  |`  ( R  X.  R ) )
2221fneq1i 5985 . . 3  |-  ( H  Fn  ( R  X.  R )  <->  ( RingHom  |`  ( R  X.  R ) )  Fn  ( R  X.  R ) )
2320, 22sylibr 224 . 2  |-  ( ph  ->  H  Fn  ( R  X.  R ) )
241, 5, 12, 23rescval2 16488 1  |-  ( ph  ->  ( C  |`cat  H )  =  ( ( Cs  R ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183    X. cxp 5112    |` cres 5116    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   ↾s cress 15858   Hom chom 15952    |`cat cresc 16468   Ringcrg 18547   RingHom crh 18712  RngCatALTVcrngcALTV 41958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-resc 16471  df-mhm 17335  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator