MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem9 Structured version   Visualization version   Unicode version

Theorem ruclem9 14967
Description: Lemma for ruc 14972. The first components of the  G sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
ruclem9.6  |-  ( ph  ->  M  e.  NN0 )
ruclem9.7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
ruclem9  |-  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  N
) )  /\  ( 2nd `  ( G `  N ) )  <_ 
( 2nd `  ( G `  M )
) ) )
Distinct variable groups:    x, m, y, F    m, G, x, y    m, M, x, y    m, N, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)

Proof of Theorem ruclem9
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruclem9.7 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 fveq2 6191 . . . . . . 7  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
32fveq2d 6195 . . . . . 6  |-  ( k  =  M  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  M )
) )
43breq2d 4665 . . . . 5  |-  ( k  =  M  ->  (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  <->  ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  M ) ) ) )
52fveq2d 6195 . . . . . 6  |-  ( k  =  M  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  M )
) )
65breq1d 4663 . . . . 5  |-  ( k  =  M  ->  (
( 2nd `  ( G `  k )
)  <_  ( 2nd `  ( G `  M
) )  <->  ( 2nd `  ( G `  M
) )  <_  ( 2nd `  ( G `  M ) ) ) )
74, 6anbi12d 747 . . . 4  |-  ( k  =  M  ->  (
( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  /\  ( 2nd `  ( G `  k ) )  <_ 
( 2nd `  ( G `  M )
) )  <->  ( ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  M )
)  /\  ( 2nd `  ( G `  M
) )  <_  ( 2nd `  ( G `  M ) ) ) ) )
87imbi2d 330 . . 3  |-  ( k  =  M  ->  (
( ph  ->  ( ( 1st `  ( G `
 M ) )  <_  ( 1st `  ( G `  k )
)  /\  ( 2nd `  ( G `  k
) )  <_  ( 2nd `  ( G `  M ) ) ) )  <->  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  M
) )  /\  ( 2nd `  ( G `  M ) )  <_ 
( 2nd `  ( G `  M )
) ) ) ) )
9 fveq2 6191 . . . . . . 7  |-  ( k  =  n  ->  ( G `  k )  =  ( G `  n ) )
109fveq2d 6195 . . . . . 6  |-  ( k  =  n  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  n )
) )
1110breq2d 4665 . . . . 5  |-  ( k  =  n  ->  (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  <->  ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  n ) ) ) )
129fveq2d 6195 . . . . . 6  |-  ( k  =  n  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  n )
) )
1312breq1d 4663 . . . . 5  |-  ( k  =  n  ->  (
( 2nd `  ( G `  k )
)  <_  ( 2nd `  ( G `  M
) )  <->  ( 2nd `  ( G `  n
) )  <_  ( 2nd `  ( G `  M ) ) ) )
1411, 13anbi12d 747 . . . 4  |-  ( k  =  n  ->  (
( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  /\  ( 2nd `  ( G `  k ) )  <_ 
( 2nd `  ( G `  M )
) )  <->  ( ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  n )
)  /\  ( 2nd `  ( G `  n
) )  <_  ( 2nd `  ( G `  M ) ) ) ) )
1514imbi2d 330 . . 3  |-  ( k  =  n  ->  (
( ph  ->  ( ( 1st `  ( G `
 M ) )  <_  ( 1st `  ( G `  k )
)  /\  ( 2nd `  ( G `  k
) )  <_  ( 2nd `  ( G `  M ) ) ) )  <->  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  n
) )  /\  ( 2nd `  ( G `  n ) )  <_ 
( 2nd `  ( G `  M )
) ) ) ) )
16 fveq2 6191 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
1716fveq2d 6195 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  ( n  +  1 ) ) ) )
1817breq2d 4665 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  <->  ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  ( n  +  1
) ) ) ) )
1916fveq2d 6195 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  ( n  +  1 ) ) ) )
2019breq1d 4663 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( 2nd `  ( G `  k )
)  <_  ( 2nd `  ( G `  M
) )  <->  ( 2nd `  ( G `  (
n  +  1 ) ) )  <_  ( 2nd `  ( G `  M ) ) ) )
2118, 20anbi12d 747 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  /\  ( 2nd `  ( G `  k ) )  <_ 
( 2nd `  ( G `  M )
) )  <->  ( ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  ( n  +  1 ) ) )  /\  ( 2nd `  ( G `  (
n  +  1 ) ) )  <_  ( 2nd `  ( G `  M ) ) ) ) )
2221imbi2d 330 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( ( 1st `  ( G `
 M ) )  <_  ( 1st `  ( G `  k )
)  /\  ( 2nd `  ( G `  k
) )  <_  ( 2nd `  ( G `  M ) ) ) )  <->  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  (
n  +  1 ) ) )  /\  ( 2nd `  ( G `  ( n  +  1
) ) )  <_ 
( 2nd `  ( G `  M )
) ) ) ) )
23 fveq2 6191 . . . . . . 7  |-  ( k  =  N  ->  ( G `  k )  =  ( G `  N ) )
2423fveq2d 6195 . . . . . 6  |-  ( k  =  N  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  N )
) )
2524breq2d 4665 . . . . 5  |-  ( k  =  N  ->  (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  <->  ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  N ) ) ) )
2623fveq2d 6195 . . . . . 6  |-  ( k  =  N  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  N )
) )
2726breq1d 4663 . . . . 5  |-  ( k  =  N  ->  (
( 2nd `  ( G `  k )
)  <_  ( 2nd `  ( G `  M
) )  <->  ( 2nd `  ( G `  N
) )  <_  ( 2nd `  ( G `  M ) ) ) )
2825, 27anbi12d 747 . . . 4  |-  ( k  =  N  ->  (
( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  k
) )  /\  ( 2nd `  ( G `  k ) )  <_ 
( 2nd `  ( G `  M )
) )  <->  ( ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  N )
)  /\  ( 2nd `  ( G `  N
) )  <_  ( 2nd `  ( G `  M ) ) ) ) )
2928imbi2d 330 . . 3  |-  ( k  =  N  ->  (
( ph  ->  ( ( 1st `  ( G `
 M ) )  <_  ( 1st `  ( G `  k )
)  /\  ( 2nd `  ( G `  k
) )  <_  ( 2nd `  ( G `  M ) ) ) )  <->  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  N
) )  /\  ( 2nd `  ( G `  N ) )  <_ 
( 2nd `  ( G `  M )
) ) ) ) )
30 ruc.1 . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
31 ruc.2 . . . . . . . . 9  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
32 ruc.4 . . . . . . . . 9  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
33 ruc.5 . . . . . . . . 9  |-  G  =  seq 0 ( D ,  C )
3430, 31, 32, 33ruclem6 14964 . . . . . . . 8  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
35 ruclem9.6 . . . . . . . 8  |-  ( ph  ->  M  e.  NN0 )
3634, 35ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( G `  M
)  e.  ( RR 
X.  RR ) )
37 xp1st 7198 . . . . . . 7  |-  ( ( G `  M )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  M
) )  e.  RR )
3836, 37syl 17 . . . . . 6  |-  ( ph  ->  ( 1st `  ( G `  M )
)  e.  RR )
3938leidd 10594 . . . . 5  |-  ( ph  ->  ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  M
) ) )
40 xp2nd 7199 . . . . . . 7  |-  ( ( G `  M )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  M
) )  e.  RR )
4136, 40syl 17 . . . . . 6  |-  ( ph  ->  ( 2nd `  ( G `  M )
)  e.  RR )
4241leidd 10594 . . . . 5  |-  ( ph  ->  ( 2nd `  ( G `  M )
)  <_  ( 2nd `  ( G `  M
) ) )
4339, 42jca 554 . . . 4  |-  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  M
) )  /\  ( 2nd `  ( G `  M ) )  <_ 
( 2nd `  ( G `  M )
) ) )
4443a1i 11 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  M ) )  /\  ( 2nd `  ( G `
 M ) )  <_  ( 2nd `  ( G `  M )
) ) ) )
4530adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  F : NN
--> RR )
4631adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
4734adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  G : NN0
--> ( RR  X.  RR ) )
48 eluznn0 11757 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  n  e.  ( ZZ>= `  M ) )  ->  n  e.  NN0 )
4935, 48sylan 488 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  NN0 )
5047, 49ffvelrnd 6360 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n )  e.  ( RR  X.  RR ) )
51 xp1st 7198 . . . . . . . . . . 11  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  n
) )  e.  RR )
5250, 51syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  n
) )  e.  RR )
53 xp2nd 7199 . . . . . . . . . . 11  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
5450, 53syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 2nd `  ( G `  n
) )  e.  RR )
55 nn0p1nn 11332 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
5649, 55syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( n  +  1 )  e.  NN )
5745, 56ffvelrnd 6360 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  ( n  +  1 ) )  e.  RR )
58 eqid 2622 . . . . . . . . . 10  |-  ( 1st `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  =  ( 1st `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
59 eqid 2622 . . . . . . . . . 10  |-  ( 2nd `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  =  ( 2nd `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
6030, 31, 32, 33ruclem8 14966 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) )
6149, 60syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) )
6245, 46, 52, 54, 57, 58, 59, 61ruclem2 14961 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( 1st `  ( G `  n ) )  <_ 
( 1st `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  /\  ( 1st `  ( <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. D ( F `
 ( n  + 
1 ) ) ) )  <  ( 2nd `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  /\  ( 2nd `  ( <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. D ( F `
 ( n  + 
1 ) ) ) )  <_  ( 2nd `  ( G `  n
) ) ) )
6362simp1d 1073 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  n
) )  <_  ( 1st `  ( <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. D ( F `
 ( n  + 
1 ) ) ) ) )
6430, 31, 32, 33ruclem7 14965 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  ( n  +  1 ) )  =  ( ( G `  n
) D ( F `
 ( n  + 
1 ) ) ) )
6549, 64syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  ( n  +  1 ) )  =  ( ( G `  n
) D ( F `
 ( n  + 
1 ) ) ) )
66 1st2nd2 7205 . . . . . . . . . . . 12  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( G `
 n )  = 
<. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. )
6750, 66syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n )  =  <. ( 1st `  ( G `
 n ) ) ,  ( 2nd `  ( G `  n )
) >. )
6867oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( G `  n ) D ( F `  ( n  +  1
) ) )  =  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
6965, 68eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  ( n  +  1 ) )  =  (
<. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
7069fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  =  ( 1st `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) ) )
7163, 70breqtrrd 4681 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  n
) )  <_  ( 1st `  ( G `  ( n  +  1
) ) ) )
7238adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  M
) )  e.  RR )
73 peano2nn0 11333 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
7449, 73syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( n  +  1 )  e. 
NN0 )
7547, 74ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  ( n  +  1 ) )  e.  ( RR  X.  RR ) )
76 xp1st 7198 . . . . . . . . 9  |-  ( ( G `  ( n  +  1 ) )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  e.  RR )
7775, 76syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  e.  RR )
78 letr 10131 . . . . . . . 8  |-  ( ( ( 1st `  ( G `  M )
)  e.  RR  /\  ( 1st `  ( G `
 n ) )  e.  RR  /\  ( 1st `  ( G `  ( n  +  1
) ) )  e.  RR )  ->  (
( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  n
) )  /\  ( 1st `  ( G `  n ) )  <_ 
( 1st `  ( G `  ( n  +  1 ) ) ) )  ->  ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  ( n  +  1 ) ) ) ) )
7972, 52, 77, 78syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  n
) )  /\  ( 1st `  ( G `  n ) )  <_ 
( 1st `  ( G `  ( n  +  1 ) ) ) )  ->  ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  ( n  +  1 ) ) ) ) )
8071, 79mpan2d 710 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( 1st `  ( G `  M ) )  <_ 
( 1st `  ( G `  n )
)  ->  ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  ( n  +  1
) ) ) ) )
8169fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 2nd `  ( G `  (
n  +  1 ) ) )  =  ( 2nd `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) ) )
8262simp3d 1075 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 2nd `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  <_  ( 2nd `  ( G `  n ) ) )
8381, 82eqbrtrd 4675 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 2nd `  ( G `  (
n  +  1 ) ) )  <_  ( 2nd `  ( G `  n ) ) )
84 xp2nd 7199 . . . . . . . . 9  |-  ( ( G `  ( n  +  1 ) )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  (
n  +  1 ) ) )  e.  RR )
8575, 84syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 2nd `  ( G `  (
n  +  1 ) ) )  e.  RR )
8641adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 2nd `  ( G `  M
) )  e.  RR )
87 letr 10131 . . . . . . . 8  |-  ( ( ( 2nd `  ( G `  ( n  +  1 ) ) )  e.  RR  /\  ( 2nd `  ( G `
 n ) )  e.  RR  /\  ( 2nd `  ( G `  M ) )  e.  RR )  ->  (
( ( 2nd `  ( G `  ( n  +  1 ) ) )  <_  ( 2nd `  ( G `  n
) )  /\  ( 2nd `  ( G `  n ) )  <_ 
( 2nd `  ( G `  M )
) )  ->  ( 2nd `  ( G `  ( n  +  1
) ) )  <_ 
( 2nd `  ( G `  M )
) ) )
8885, 54, 86, 87syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( 2nd `  ( G `  ( n  +  1 ) ) )  <_  ( 2nd `  ( G `  n
) )  /\  ( 2nd `  ( G `  n ) )  <_ 
( 2nd `  ( G `  M )
) )  ->  ( 2nd `  ( G `  ( n  +  1
) ) )  <_ 
( 2nd `  ( G `  M )
) ) )
8983, 88mpand 711 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( ( 2nd `  ( G `  n ) )  <_ 
( 2nd `  ( G `  M )
)  ->  ( 2nd `  ( G `  (
n  +  1 ) ) )  <_  ( 2nd `  ( G `  M ) ) ) )
9080, 89anim12d 586 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  n
) )  /\  ( 2nd `  ( G `  n ) )  <_ 
( 2nd `  ( G `  M )
) )  ->  (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  (
n  +  1 ) ) )  /\  ( 2nd `  ( G `  ( n  +  1
) ) )  <_ 
( 2nd `  ( G `  M )
) ) ) )
9190expcom 451 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  n ) )  /\  ( 2nd `  ( G `
 n ) )  <_  ( 2nd `  ( G `  M )
) )  ->  (
( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  (
n  +  1 ) ) )  /\  ( 2nd `  ( G `  ( n  +  1
) ) )  <_ 
( 2nd `  ( G `  M )
) ) ) ) )
9291a2d 29 . . 3  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( ( 1st `  ( G `  M
) )  <_  ( 1st `  ( G `  n ) )  /\  ( 2nd `  ( G `
 n ) )  <_  ( 2nd `  ( G `  M )
) ) )  -> 
( ph  ->  ( ( 1st `  ( G `
 M ) )  <_  ( 1st `  ( G `  ( n  +  1 ) ) )  /\  ( 2nd `  ( G `  (
n  +  1 ) ) )  <_  ( 2nd `  ( G `  M ) ) ) ) ) )
938, 15, 22, 29, 44, 92uzind4 11746 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  N
) )  /\  ( 2nd `  ( G `  N ) )  <_ 
( 2nd `  ( G `  M )
) ) ) )
941, 93mpcom 38 1  |-  ( ph  ->  ( ( 1st `  ( G `  M )
)  <_  ( 1st `  ( G `  N
) )  /\  ( 2nd `  ( G `  N ) )  <_ 
( 2nd `  ( G `  M )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   [_csb 3533    u. cun 3572   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  ruclem10  14968
  Copyright terms: Public domain W3C validator