MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem2 Structured version   Visualization version   Unicode version

Theorem vdwlem2 15686
Description: Lemma for vdw 15698. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem2.r  |-  ( ph  ->  R  e.  Fin )
vdwlem2.k  |-  ( ph  ->  K  e.  NN0 )
vdwlem2.w  |-  ( ph  ->  W  e.  NN )
vdwlem2.n  |-  ( ph  ->  N  e.  NN )
vdwlem2.f  |-  ( ph  ->  F : ( 1 ... M ) --> R )
vdwlem2.m  |-  ( ph  ->  M  e.  ( ZZ>= `  ( W  +  N
) ) )
vdwlem2.g  |-  G  =  ( x  e.  ( 1 ... W ) 
|->  ( F `  (
x  +  N ) ) )
Assertion
Ref Expression
vdwlem2  |-  ( ph  ->  ( K MonoAP  G  ->  K MonoAP  F ) )
Distinct variable groups:    x, F    x, K    x, M    ph, x    x, G    x, N    x, R    x, W

Proof of Theorem vdwlem2
Dummy variables  a 
b  c  d  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6  |-  ( a  e.  NN  ->  a  e.  NN )
2 vdwlem2.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
3 nnaddcl 11042 . . . . . 6  |-  ( ( a  e.  NN  /\  N  e.  NN )  ->  ( a  +  N
)  e.  NN )
41, 2, 3syl2anr 495 . . . . 5  |-  ( (
ph  /\  a  e.  NN )  ->  ( a  +  N )  e.  NN )
5 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  a  e.  NN )
65nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  a  e.  CC )
72ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  e.  NN )
87nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  N  e.  CC )
9 elfznn0 12433 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  ->  m  e.  NN0 )
109adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  m  e.  NN0 )
1110nn0cnd 11353 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  m  e.  CC )
12 simplrl 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  d  e.  NN )
1312nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  d  e.  CC )
1411, 13mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
m  x.  d )  e.  CC )
156, 8, 14add32d 10263 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( a  +  N
)  +  ( m  x.  d ) )  =  ( ( a  +  ( m  x.  d ) )  +  N ) )
16 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
a (AP `  K
) d )  C_  ( `' G " { c } ) )
17 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  +  ( m  x.  d ) )  =  ( a  +  ( m  x.  d ) )
18 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
n  x.  d )  =  ( m  x.  d ) )
1918oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  =  m  ->  (
a  +  ( n  x.  d ) )  =  ( a  +  ( m  x.  d
) ) )
2019eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  m  ->  (
( a  +  ( m  x.  d ) )  =  ( a  +  ( n  x.  d ) )  <->  ( a  +  ( m  x.  d ) )  =  ( a  +  ( m  x.  d ) ) ) )
2120rspcev 3309 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  ( 0 ... ( K  - 
1 ) )  /\  ( a  +  ( m  x.  d ) )  =  ( a  +  ( m  x.  d ) ) )  ->  E. n  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d ) )  =  ( a  +  ( n  x.  d ) ) )
2217, 21mpan2 707 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  ->  E. n  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  =  ( a  +  ( n  x.  d ) ) )
2322adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  E. n  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  =  ( a  +  ( n  x.  d ) ) )
24 vdwlem2.k . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  K  e.  NN0 )
2524ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  K  e.  NN0 )
2625adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  K  e.  NN0 )
27 vdwapval 15677 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  NN0  /\  a  e.  NN  /\  d  e.  NN )  ->  (
( a  +  ( m  x.  d ) )  e.  ( a (AP `  K ) d )  <->  E. n  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  =  ( a  +  ( n  x.  d ) ) ) )
2826, 5, 12, 27syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( a  +  ( m  x.  d ) )  e.  ( a (AP `  K ) d )  <->  E. n  e.  ( 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d
) )  =  ( a  +  ( n  x.  d ) ) ) )
2923, 28mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
a  +  ( m  x.  d ) )  e.  ( a (AP
`  K ) d ) )
3016, 29sseldd 3604 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
a  +  ( m  x.  d ) )  e.  ( `' G " { c } ) )
31 elfznn 12370 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ( 1 ... W )  ->  x  e.  NN )
32 nnaddcl 11042 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  NN  /\  N  e.  NN )  ->  ( x  +  N
)  e.  NN )
3331, 2, 32syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  (
x  +  N )  e.  NN )
34 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  =  ( ZZ>= `  1 )
3533, 34syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  (
x  +  N )  e.  ( ZZ>= `  1
) )
36 vdwlem2.m . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  M  e.  ( ZZ>= `  ( W  +  N
) ) )
3736adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  M  e.  ( ZZ>= `  ( W  +  N ) ) )
38 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ( 1 ... W )  ->  W  e.  ( ZZ>= `  x )
)
392nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  N  e.  ZZ )
40 eluzadd 11716 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( W  e.  ( ZZ>= `  x )  /\  N  e.  ZZ )  ->  ( W  +  N )  e.  ( ZZ>= `  ( x  +  N ) ) )
4138, 39, 40syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  ( W  +  N )  e.  ( ZZ>= `  ( x  +  N ) ) )
42 uztrn 11704 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  ( ZZ>= `  ( W  +  N
) )  /\  ( W  +  N )  e.  ( ZZ>= `  ( x  +  N ) ) )  ->  M  e.  (
ZZ>= `  ( x  +  N ) ) )
4337, 41, 42syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  M  e.  ( ZZ>= `  ( x  +  N ) ) )
44 elfzuzb 12336 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  +  N )  e.  ( 1 ... M )  <->  ( (
x  +  N )  e.  ( ZZ>= `  1
)  /\  M  e.  ( ZZ>= `  ( x  +  N ) ) ) )
4535, 43, 44sylanbrc 698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  (
x  +  N )  e.  ( 1 ... M ) )
46 vdwlem2.f . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  F : ( 1 ... M ) --> R )
4746ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( x  +  N )  e.  ( 1 ... M ) )  ->  ( F `  ( x  +  N
) )  e.  R
)
4845, 47syldan 487 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... W
) )  ->  ( F `  ( x  +  N ) )  e.  R )
49 vdwlem2.g . . . . . . . . . . . . . . . . . . . 20  |-  G  =  ( x  e.  ( 1 ... W ) 
|->  ( F `  (
x  +  N ) ) )
5048, 49fmptd 6385 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  G : ( 1 ... W ) --> R )
51 ffn 6045 . . . . . . . . . . . . . . . . . . 19  |-  ( G : ( 1 ... W ) --> R  ->  G  Fn  ( 1 ... W ) )
5250, 51syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  Fn  ( 1 ... W ) )
5352ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  G  Fn  ( 1 ... W
) )
54 fniniseg 6338 . . . . . . . . . . . . . . . . 17  |-  ( G  Fn  ( 1 ... W )  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' G " { c } )  <->  ( (
a  +  ( m  x.  d ) )  e.  ( 1 ... W )  /\  ( G `  ( a  +  ( m  x.  d ) ) )  =  c ) ) )
5553, 54syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( a  +  ( m  x.  d ) )  e.  ( `' G " { c } )  <->  ( (
a  +  ( m  x.  d ) )  e.  ( 1 ... W )  /\  ( G `  ( a  +  ( m  x.  d ) ) )  =  c ) ) )
5630, 55mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( a  +  ( m  x.  d ) )  e.  ( 1 ... W )  /\  ( G `  ( a  +  ( m  x.  d ) ) )  =  c ) )
5756simpld 475 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
a  +  ( m  x.  d ) )  e.  ( 1 ... W ) )
5845ralrimiva 2966 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  ( 1 ... W ) ( x  +  N
)  e.  ( 1 ... M ) )
5958ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  A. x  e.  ( 1 ... W
) ( x  +  N )  e.  ( 1 ... M ) )
60 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( a  +  ( m  x.  d
) )  ->  (
x  +  N )  =  ( ( a  +  ( m  x.  d ) )  +  N ) )
6160eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( x  =  ( a  +  ( m  x.  d
) )  ->  (
( x  +  N
)  e.  ( 1 ... M )  <->  ( (
a  +  ( m  x.  d ) )  +  N )  e.  ( 1 ... M
) ) )
6261rspcv 3305 . . . . . . . . . . . . . 14  |-  ( ( a  +  ( m  x.  d ) )  e.  ( 1 ... W )  ->  ( A. x  e.  (
1 ... W ) ( x  +  N )  e.  ( 1 ... M )  ->  (
( a  +  ( m  x.  d ) )  +  N )  e.  ( 1 ... M ) ) )
6357, 59, 62sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( a  +  ( m  x.  d ) )  +  N )  e.  ( 1 ... M ) )
6415, 63eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( a  +  N
)  +  ( m  x.  d ) )  e.  ( 1 ... M ) )
6515fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( F `  ( (
a  +  N )  +  ( m  x.  d ) ) )  =  ( F `  ( ( a  +  ( m  x.  d
) )  +  N
) ) )
6660fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( x  =  ( a  +  ( m  x.  d
) )  ->  ( F `  ( x  +  N ) )  =  ( F `  (
( a  +  ( m  x.  d ) )  +  N ) ) )
67 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( F `
 ( ( a  +  ( m  x.  d ) )  +  N ) )  e. 
_V
6866, 49, 67fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( ( a  +  ( m  x.  d ) )  e.  ( 1 ... W )  ->  ( G `  ( a  +  ( m  x.  d ) ) )  =  ( F `  ( ( a  +  ( m  x.  d
) )  +  N
) ) )
6957, 68syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( G `  ( a  +  ( m  x.  d ) ) )  =  ( F `  ( ( a  +  ( m  x.  d
) )  +  N
) ) )
7056simprd 479 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( G `  ( a  +  ( m  x.  d ) ) )  =  c )
7165, 69, 703eqtr2d 2662 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( F `  ( (
a  +  N )  +  ( m  x.  d ) ) )  =  c )
7264, 71jca 554 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
( ( a  +  N )  +  ( m  x.  d ) )  e.  ( 1 ... M )  /\  ( F `  ( ( a  +  N )  +  ( m  x.  d ) ) )  =  c ) )
73 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  ( ( a  +  N )  +  ( m  x.  d
) )  ->  (
x  e.  ( 1 ... M )  <->  ( (
a  +  N )  +  ( m  x.  d ) )  e.  ( 1 ... M
) ) )
74 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  ( ( a  +  N )  +  ( m  x.  d
) )  ->  ( F `  x )  =  ( F `  ( ( a  +  N )  +  ( m  x.  d ) ) ) )
7574eqeq1d 2624 . . . . . . . . . . . 12  |-  ( x  =  ( ( a  +  N )  +  ( m  x.  d
) )  ->  (
( F `  x
)  =  c  <->  ( F `  ( ( a  +  N )  +  ( m  x.  d ) ) )  =  c ) )
7673, 75anbi12d 747 . . . . . . . . . . 11  |-  ( x  =  ( ( a  +  N )  +  ( m  x.  d
) )  ->  (
( x  e.  ( 1 ... M )  /\  ( F `  x )  =  c )  <->  ( ( ( a  +  N )  +  ( m  x.  d ) )  e.  ( 1 ... M
)  /\  ( F `  ( ( a  +  N )  +  ( m  x.  d ) ) )  =  c ) ) )
7772, 76syl5ibrcom 237 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  NN )  /\  ( d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  (
x  =  ( ( a  +  N )  +  ( m  x.  d ) )  -> 
( x  e.  ( 1 ... M )  /\  ( F `  x )  =  c ) ) )
7877rexlimdva 3031 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  ( E. m  e.  (
0 ... ( K  - 
1 ) ) x  =  ( ( a  +  N )  +  ( m  x.  d
) )  ->  (
x  e.  ( 1 ... M )  /\  ( F `  x )  =  c ) ) )
794adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  (
a  +  N )  e.  NN )
80 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  d  e.  NN )
81 vdwapval 15677 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  ( a  +  N
)  e.  NN  /\  d  e.  NN )  ->  ( x  e.  ( ( a  +  N
) (AP `  K
) d )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( a  +  N
)  +  ( m  x.  d ) ) ) )
8225, 79, 80, 81syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  (
x  e.  ( ( a  +  N ) (AP `  K ) d )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( a  +  N
)  +  ( m  x.  d ) ) ) )
83 ffn 6045 . . . . . . . . . . . 12  |-  ( F : ( 1 ... M ) --> R  ->  F  Fn  ( 1 ... M ) )
8446, 83syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  Fn  ( 1 ... M ) )
8584ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  F  Fn  ( 1 ... M
) )
86 fniniseg 6338 . . . . . . . . . 10  |-  ( F  Fn  ( 1 ... M )  ->  (
x  e.  ( `' F " { c } )  <->  ( x  e.  ( 1 ... M
)  /\  ( F `  x )  =  c ) ) )
8785, 86syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  (
x  e.  ( `' F " { c } )  <->  ( x  e.  ( 1 ... M
)  /\  ( F `  x )  =  c ) ) )
8878, 82, 873imtr4d 283 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  (
x  e.  ( ( a  +  N ) (AP `  K ) d )  ->  x  e.  ( `' F " { c } ) ) )
8988ssrdv 3609 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  NN )  /\  (
d  e.  NN  /\  ( a (AP `  K ) d ) 
C_  ( `' G " { c } ) ) )  ->  (
( a  +  N
) (AP `  K
) d )  C_  ( `' F " { c } ) )
9089expr 643 . . . . . 6  |-  ( ( ( ph  /\  a  e.  NN )  /\  d  e.  NN )  ->  (
( a (AP `  K ) d ) 
C_  ( `' G " { c } )  ->  ( ( a  +  N ) (AP
`  K ) d )  C_  ( `' F " { c } ) ) )
9190reximdva 3017 . . . . 5  |-  ( (
ph  /\  a  e.  NN )  ->  ( E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' G " { c } )  ->  E. d  e.  NN  ( ( a  +  N ) (AP
`  K ) d )  C_  ( `' F " { c } ) ) )
92 oveq1 6657 . . . . . . . 8  |-  ( b  =  ( a  +  N )  ->  (
b (AP `  K
) d )  =  ( ( a  +  N ) (AP `  K ) d ) )
9392sseq1d 3632 . . . . . . 7  |-  ( b  =  ( a  +  N )  ->  (
( b (AP `  K ) d ) 
C_  ( `' F " { c } )  <-> 
( ( a  +  N ) (AP `  K ) d ) 
C_  ( `' F " { c } ) ) )
9493rexbidv 3052 . . . . . 6  |-  ( b  =  ( a  +  N )  ->  ( E. d  e.  NN  ( b (AP `  K ) d ) 
C_  ( `' F " { c } )  <->  E. d  e.  NN  ( ( a  +  N ) (AP `  K ) d ) 
C_  ( `' F " { c } ) ) )
9594rspcev 3309 . . . . 5  |-  ( ( ( a  +  N
)  e.  NN  /\  E. d  e.  NN  (
( a  +  N
) (AP `  K
) d )  C_  ( `' F " { c } ) )  ->  E. b  e.  NN  E. d  e.  NN  (
b (AP `  K
) d )  C_  ( `' F " { c } ) )
964, 91, 95syl6an 568 . . . 4  |-  ( (
ph  /\  a  e.  NN )  ->  ( E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' G " { c } )  ->  E. b  e.  NN  E. d  e.  NN  ( b (AP
`  K ) d )  C_  ( `' F " { c } ) ) )
9796rexlimdva 3031 . . 3  |-  ( ph  ->  ( E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' G " { c } )  ->  E. b  e.  NN  E. d  e.  NN  ( b (AP
`  K ) d )  C_  ( `' F " { c } ) ) )
9897eximdv 1846 . 2  |-  ( ph  ->  ( E. c E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' G " { c } )  ->  E. c E. b  e.  NN  E. d  e.  NN  (
b (AP `  K
) d )  C_  ( `' F " { c } ) ) )
99 ovex 6678 . . 3  |-  ( 1 ... W )  e. 
_V
10099, 24, 50vdwmc 15682 . 2  |-  ( ph  ->  ( K MonoAP  G  <->  E. c E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' G " { c } ) ) )
101 ovex 6678 . . 3  |-  ( 1 ... M )  e. 
_V
102101, 24, 46vdwmc 15682 . 2  |-  ( ph  ->  ( K MonoAP  F  <->  E. c E. b  e.  NN  E. d  e.  NN  (
b (AP `  K
) d )  C_  ( `' F " { c } ) ) )
10398, 100, 1023imtr4d 283 1  |-  ( ph  ->  ( K MonoAP  G  ->  K MonoAP  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  APcvdwa 15669   MonoAP cvdwm 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-vdwap 15672  df-vdwmc 15673
This theorem is referenced by:  vdwlem9  15693
  Copyright terms: Public domain W3C validator