MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapf Structured version   Visualization version   Unicode version

Theorem vdwapf 15676
Description: The arithmetic progression function is a function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapf  |-  ( K  e.  NN0  ->  (AP `  K ) : ( NN  X.  NN ) --> ~P NN )

Proof of Theorem vdwapf
Dummy variables  a 
d  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  d  e.  NN )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  a  e.  NN )
2 elfznn0 12433 . . . . . . . . . 10  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  ->  m  e.  NN0 )
32adantl 482 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  d  e.  NN )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  m  e.  NN0 )
4 nnnn0 11299 . . . . . . . . . 10  |-  ( d  e.  NN  ->  d  e.  NN0 )
54ad2antlr 763 . . . . . . . . 9  |-  ( ( ( a  e.  NN  /\  d  e.  NN )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  d  e.  NN0 )
63, 5nn0mulcld 11356 . . . . . . . 8  |-  ( ( ( a  e.  NN  /\  d  e.  NN )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( m  x.  d )  e.  NN0 )
7 nnnn0addcl 11323 . . . . . . . 8  |-  ( ( a  e.  NN  /\  ( m  x.  d
)  e.  NN0 )  ->  ( a  +  ( m  x.  d ) )  e.  NN )
81, 6, 7syl2anc 693 . . . . . . 7  |-  ( ( ( a  e.  NN  /\  d  e.  NN )  /\  m  e.  ( 0 ... ( K  -  1 ) ) )  ->  ( a  +  ( m  x.  d ) )  e.  NN )
9 eqid 2622 . . . . . . 7  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d ) ) )  =  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) )
108, 9fmptd 6385 . . . . . 6  |-  ( ( a  e.  NN  /\  d  e.  NN )  ->  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) ) : ( 0 ... ( K  -  1 ) ) --> NN )
11 frn 6053 . . . . . 6  |-  ( ( m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( a  +  ( m  x.  d ) ) ) : ( 0 ... ( K  - 
1 ) ) --> NN 
->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) )  C_  NN )
1210, 11syl 17 . . . . 5  |-  ( ( a  e.  NN  /\  d  e.  NN )  ->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) )  C_  NN )
13 nnex 11026 . . . . . 6  |-  NN  e.  _V
1413elpw2 4828 . . . . 5  |-  ( ran  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) )  e.  ~P NN 
<->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) )  C_  NN )
1512, 14sylibr 224 . . . 4  |-  ( ( a  e.  NN  /\  d  e.  NN )  ->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) )  e. 
~P NN )
1615rgen2a 2977 . . 3  |-  A. a  e.  NN  A. d  e.  NN  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d ) ) )  e.  ~P NN
17 eqid 2622 . . . 4  |-  ( a  e.  NN ,  d  e.  NN  |->  ran  (
m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( a  +  ( m  x.  d ) ) ) )  =  ( a  e.  NN , 
d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) ) )
1817fmpt2 7237 . . 3  |-  ( A. a  e.  NN  A. d  e.  NN  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d ) ) )  e.  ~P NN  <->  ( a  e.  NN ,  d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) ) ) : ( NN  X.  NN ) --> ~P NN )
1916, 18mpbi 220 . 2  |-  ( a  e.  NN ,  d  e.  NN  |->  ran  (
m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( a  +  ( m  x.  d ) ) ) ) : ( NN  X.  NN ) --> ~P NN
20 vdwapfval 15675 . . 3  |-  ( K  e.  NN0  ->  (AP `  K )  =  ( a  e.  NN , 
d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) ) ) )
2120feq1d 6030 . 2  |-  ( K  e.  NN0  ->  ( (AP
`  K ) : ( NN  X.  NN )
--> ~P NN  <->  ( a  e.  NN ,  d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) ) ) : ( NN  X.  NN ) --> ~P NN ) )
2219, 21mpbiri 248 1  |-  ( K  e.  NN0  ->  (AP `  K ) : ( NN  X.  NN ) --> ~P NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  APcvdwa 15669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-vdwap 15672
This theorem is referenced by:  vdwmc  15682
  Copyright terms: Public domain W3C validator