| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xadddi2 | Structured version Visualization version Unicode version | ||
| Description: The assumption that the multiplier be real in xadddi 12125 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xadddi2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . 4
| |
| 2 | simp2l 1087 |
. . . . 5
| |
| 3 | 2 | ad2antrr 762 |
. . . 4
|
| 4 | simp3l 1089 |
. . . . 5
| |
| 5 | 4 | ad2antrr 762 |
. . . 4
|
| 6 | xadddi 12125 |
. . . 4
| |
| 7 | 1, 3, 5, 6 | syl3anc 1326 |
. . 3
|
| 8 | pnfxr 10092 |
. . . . . 6
| |
| 9 | 4 | adantr 481 |
. . . . . . 7
|
| 10 | 9 | adantr 481 |
. . . . . 6
|
| 11 | xmulcl 12103 |
. . . . . 6
| |
| 12 | 8, 10, 11 | sylancr 695 |
. . . . 5
|
| 13 | 8, 9, 11 | sylancr 695 |
. . . . . . 7
|
| 14 | simpl3r 1117 |
. . . . . . . 8
| |
| 15 | 0lepnf 11966 |
. . . . . . . . 9
| |
| 16 | xmulge0 12114 |
. . . . . . . . 9
| |
| 17 | 8, 15, 16 | mpanl12 718 |
. . . . . . . 8
|
| 18 | 9, 14, 17 | syl2anc 693 |
. . . . . . 7
|
| 19 | ge0nemnf 12004 |
. . . . . . 7
| |
| 20 | 13, 18, 19 | syl2anc 693 |
. . . . . 6
|
| 21 | 20 | adantr 481 |
. . . . 5
|
| 22 | xaddpnf2 12058 |
. . . . 5
| |
| 23 | 12, 21, 22 | syl2anc 693 |
. . . 4
|
| 24 | oveq1 6657 |
. . . . . 6
| |
| 25 | oveq1 6657 |
. . . . . 6
| |
| 26 | 24, 25 | oveq12d 6668 |
. . . . 5
|
| 27 | xmulpnf2 12105 |
. . . . . . 7
| |
| 28 | 2, 27 | sylan 488 |
. . . . . 6
|
| 29 | 28 | oveq1d 6665 |
. . . . 5
|
| 30 | 26, 29 | sylan9eqr 2678 |
. . . 4
|
| 31 | oveq1 6657 |
. . . . 5
| |
| 32 | xaddcl 12070 |
. . . . . . . 8
| |
| 33 | 2, 4, 32 | syl2anc 693 |
. . . . . . 7
|
| 34 | 33 | adantr 481 |
. . . . . 6
|
| 35 | 0xr 10086 |
. . . . . . . 8
| |
| 36 | 35 | a1i 11 |
. . . . . . 7
|
| 37 | 2 | adantr 481 |
. . . . . . 7
|
| 38 | simpr 477 |
. . . . . . 7
| |
| 39 | xaddid1 12072 |
. . . . . . . . 9
| |
| 40 | 37, 39 | syl 17 |
. . . . . . . 8
|
| 41 | xleadd2a 12084 |
. . . . . . . . 9
| |
| 42 | 36, 9, 37, 14, 41 | syl31anc 1329 |
. . . . . . . 8
|
| 43 | 40, 42 | eqbrtrrd 4677 |
. . . . . . 7
|
| 44 | 36, 37, 34, 38, 43 | xrltletrd 11992 |
. . . . . 6
|
| 45 | xmulpnf2 12105 |
. . . . . 6
| |
| 46 | 34, 44, 45 | syl2anc 693 |
. . . . 5
|
| 47 | 31, 46 | sylan9eqr 2678 |
. . . 4
|
| 48 | 23, 30, 47 | 3eqtr4rd 2667 |
. . 3
|
| 49 | mnfxr 10096 |
. . . . . . 7
| |
| 50 | xmulcl 12103 |
. . . . . . 7
| |
| 51 | 49, 9, 50 | sylancr 695 |
. . . . . 6
|
| 52 | xnegmnf 12041 |
. . . . . . . . . . . 12
| |
| 53 | 52 | oveq1i 6660 |
. . . . . . . . . . 11
|
| 54 | xmulneg1 12099 |
. . . . . . . . . . . 12
| |
| 55 | 49, 9, 54 | sylancr 695 |
. . . . . . . . . . 11
|
| 56 | 53, 55 | syl5reqr 2671 |
. . . . . . . . . 10
|
| 57 | xnegpnf 12040 |
. . . . . . . . . . 11
| |
| 58 | 57 | a1i 11 |
. . . . . . . . . 10
|
| 59 | 56, 58 | eqeq12d 2637 |
. . . . . . . . 9
|
| 60 | xneg11 12046 |
. . . . . . . . . 10
| |
| 61 | 51, 8, 60 | sylancl 694 |
. . . . . . . . 9
|
| 62 | 59, 61 | bitr3d 270 |
. . . . . . . 8
|
| 63 | 62 | necon3bid 2838 |
. . . . . . 7
|
| 64 | 20, 63 | mpbid 222 |
. . . . . 6
|
| 65 | xaddmnf2 12060 |
. . . . . 6
| |
| 66 | 51, 64, 65 | syl2anc 693 |
. . . . 5
|
| 67 | 66 | adantr 481 |
. . . 4
|
| 68 | oveq1 6657 |
. . . . . 6
| |
| 69 | oveq1 6657 |
. . . . . 6
| |
| 70 | 68, 69 | oveq12d 6668 |
. . . . 5
|
| 71 | xmulmnf2 12107 |
. . . . . . 7
| |
| 72 | 2, 71 | sylan 488 |
. . . . . 6
|
| 73 | 72 | oveq1d 6665 |
. . . . 5
|
| 74 | 70, 73 | sylan9eqr 2678 |
. . . 4
|
| 75 | oveq1 6657 |
. . . . 5
| |
| 76 | xmulmnf2 12107 |
. . . . . 6
| |
| 77 | 34, 44, 76 | syl2anc 693 |
. . . . 5
|
| 78 | 75, 77 | sylan9eqr 2678 |
. . . 4
|
| 79 | 67, 74, 78 | 3eqtr4rd 2667 |
. . 3
|
| 80 | simpl1 1064 |
. . . 4
| |
| 81 | elxr 11950 |
. . . 4
| |
| 82 | 80, 81 | sylib 208 |
. . 3
|
| 83 | 7, 48, 79, 82 | mpjao3dan 1395 |
. 2
|
| 84 | simp1 1061 |
. . . . . 6
| |
| 85 | xmulcl 12103 |
. . . . . 6
| |
| 86 | 84, 4, 85 | syl2anc 693 |
. . . . 5
|
| 87 | 86 | adantr 481 |
. . . 4
|
| 88 | xaddid2 12073 |
. . . 4
| |
| 89 | 87, 88 | syl 17 |
. . 3
|
| 90 | oveq2 6658 |
. . . . . 6
| |
| 91 | 90 | eqcomd 2628 |
. . . . 5
|
| 92 | xmul01 12097 |
. . . . . 6
| |
| 93 | 92 | 3ad2ant1 1082 |
. . . . 5
|
| 94 | 91, 93 | sylan9eqr 2678 |
. . . 4
|
| 95 | 94 | oveq1d 6665 |
. . 3
|
| 96 | oveq1 6657 |
. . . . . 6
| |
| 97 | 96 | eqcomd 2628 |
. . . . 5
|
| 98 | xaddid2 12073 |
. . . . . 6
| |
| 99 | 4, 98 | syl 17 |
. . . . 5
|
| 100 | 97, 99 | sylan9eqr 2678 |
. . . 4
|
| 101 | 100 | oveq2d 6666 |
. . 3
|
| 102 | 89, 95, 101 | 3eqtr4rd 2667 |
. 2
|
| 103 | simp2r 1088 |
. . 3
| |
| 104 | xrleloe 11977 |
. . . 4
| |
| 105 | 35, 2, 104 | sylancr 695 |
. . 3
|
| 106 | 103, 105 | mpbid 222 |
. 2
|
| 107 | 83, 102, 106 | mpjaodan 827 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-xneg 11946 df-xadd 11947 df-xmul 11948 |
| This theorem is referenced by: xadddi2r 12128 |
| Copyright terms: Public domain | W3C validator |