Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst2 Structured version   Visualization version   Unicode version

Theorem xlimconst2 40061
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst2.p  |-  F/ k
ph
xlimconst2.k  |-  F/_ k F
xlimconst2.z  |-  Z  =  ( ZZ>= `  M )
xlimconst2.f  |-  ( ph  ->  F : Z --> RR* )
xlimconst2.n  |-  ( ph  ->  N  e.  Z )
xlimconst2.a  |-  ( ph  ->  A  e.  RR* )
xlimconst2.e  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  =  A )
Assertion
Ref Expression
xlimconst2  |-  ( ph  ->  F~~>* A )
Distinct variable groups:    A, k    k, N
Allowed substitution hints:    ph( k)    F( k)    M( k)    Z( k)

Proof of Theorem xlimconst2
StepHypRef Expression
1 xlimconst2.p . . 3  |-  F/ k
ph
2 xlimconst2.k . . . 4  |-  F/_ k F
3 nfcv 2764 . . . 4  |-  F/_ k
( ZZ>= `  N )
42, 3nfres 5398 . . 3  |-  F/_ k
( F  |`  ( ZZ>=
`  N ) )
5 xlimconst2.z . . . 4  |-  Z  =  ( ZZ>= `  M )
6 xlimconst2.n . . . 4  |-  ( ph  ->  N  e.  Z )
75, 6eluzelz2d 39640 . . 3  |-  ( ph  ->  N  e.  ZZ )
8 eqid 2622 . . 3  |-  ( ZZ>= `  N )  =  (
ZZ>= `  N )
9 xlimconst2.f . . . . 5  |-  ( ph  ->  F : Z --> RR* )
109ffnd 6046 . . . 4  |-  ( ph  ->  F  Fn  Z )
115, 6uzssd2 39644 . . . 4  |-  ( ph  ->  ( ZZ>= `  N )  C_  Z )
1210, 11fnssresd 39482 . . 3  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  N ) )  Fn  ( ZZ>= `  N
) )
13 xlimconst2.a . . 3  |-  ( ph  ->  A  e.  RR* )
14 fvres 6207 . . . . 5  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( ( F  |`  ( ZZ>= `  N
) ) `  k
)  =  ( F `
 k ) )
1514adantl 482 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( ( F  |`  ( ZZ>= `  N
) ) `  k
)  =  ( F `
 k ) )
16 xlimconst2.e . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( F `  k )  =  A )
1715, 16eqtrd 2656 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  N )
)  ->  ( ( F  |`  ( ZZ>= `  N
) ) `  k
)  =  A )
181, 4, 7, 8, 12, 13, 17xlimconst 40051 . 2  |-  ( ph  ->  ( F  |`  ( ZZ>=
`  N ) )~~>*
A )
195, 9fuzxrpmcn 40054 . . 3  |-  ( ph  ->  F  e.  ( RR*  ^pm 
CC ) )
2019, 7xlimres 40047 . 2  |-  ( ph  ->  ( F~~>* A  <->  ( F  |`  ( ZZ>= `  N )
)~~>* A ) )
2118, 20mpbird 247 1  |-  ( ph  ->  F~~>* A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   class class class wbr 4653    |` cres 5116   -->wf 5884   ` cfv 5888   RR*cxr 10073   ZZ>=cuz 11687  ~~>*clsxlim 40044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033  df-xlim 40045
This theorem is referenced by:  climxlim2lem  40071
  Copyright terms: Public domain W3C validator