![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wlk | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a walk iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0wlk | ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2622 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | iswlkg 26509 | . 2 ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))))) |
4 | ral0 4076 | . . . . 5 ⊢ ∀𝑘 ∈ ∅ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) | |
5 | hash0 13158 | . . . . . . . 8 ⊢ (#‘∅) = 0 | |
6 | 5 | oveq2i 6661 | . . . . . . 7 ⊢ (0..^(#‘∅)) = (0..^0) |
7 | fzo0 12492 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
8 | 6, 7 | eqtri 2644 | . . . . . 6 ⊢ (0..^(#‘∅)) = ∅ |
9 | 8 | raleqi 3142 | . . . . 5 ⊢ (∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) ↔ ∀𝑘 ∈ ∅ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) |
10 | 4, 9 | mpbir 221 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))) |
11 | 10 | biantru 526 | . . 3 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
12 | 5 | eqcomi 2631 | . . . . . 6 ⊢ 0 = (#‘∅) |
13 | 12 | oveq2i 6661 | . . . . 5 ⊢ (0...0) = (0...(#‘∅)) |
14 | 13 | feq2i 6037 | . . . 4 ⊢ (𝑃:(0...0)⟶𝑉 ↔ 𝑃:(0...(#‘∅))⟶𝑉) |
15 | wrd0 13330 | . . . . 5 ⊢ ∅ ∈ Word dom (iEdg‘𝐺) | |
16 | 15 | biantrur 527 | . . . 4 ⊢ (𝑃:(0...(#‘∅))⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉)) |
17 | 14, 16 | bitri 264 | . . 3 ⊢ (𝑃:(0...0)⟶𝑉 ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉)) |
18 | df-3an 1039 | . . 3 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘))))) | |
19 | 11, 17, 18 | 3bitr4ri 293 | . 2 ⊢ ((∅ ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘∅))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘∅))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(∅‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ 𝑃:(0...0)⟶𝑉) |
20 | 3, 19 | syl6bb 276 | 1 ⊢ (𝐺 ∈ 𝑈 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 if-wif 1012 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ∅c0 3915 {csn 4177 {cpr 4179 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 Vtxcvtx 25874 iEdgciedg 25875 Walkscwlks 26492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-wlks 26495 |
This theorem is referenced by: is0wlk 26978 0wlkon 26981 0trl 26983 0clwlk 26991 |
Copyright terms: Public domain | W3C validator |