MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg1 Structured version   Visualization version   GIF version

Theorem 1hevtxdg1 26402
Description: The vertex degree of vertex 𝐷 in a graph 𝐺 with only one hyperedge 𝐸 (not being a loop) is 1 if 𝐷 is incident with the edge 𝐸. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hevtxdg0.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1hevtxdg0.a (𝜑𝐴𝑋)
1hevtxdg0.d (𝜑𝐷𝑉)
1hevtxdg1.e (𝜑𝐸 ∈ 𝒫 𝑉)
1hevtxdg1.n (𝜑𝐷𝐸)
1hevtxdg1.l (𝜑 → 2 ≤ (#‘𝐸))
Assertion
Ref Expression
1hevtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)

Proof of Theorem 1hevtxdg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.i . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
21dmeqd 5326 . . 3 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, 𝐸⟩})
3 1hevtxdg1.e . . . 4 (𝜑𝐸 ∈ 𝒫 𝑉)
4 dmsnopg 5606 . . . 4 (𝐸 ∈ 𝒫 𝑉 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
53, 4syl 17 . . 3 (𝜑 → dom {⟨𝐴, 𝐸⟩} = {𝐴})
62, 5eqtrd 2656 . 2 (𝜑 → dom (iEdg‘𝐺) = {𝐴})
7 1hevtxdg0.a . . . . . . 7 (𝜑𝐴𝑋)
8 1hevtxdg0.v . . . . . . . . . 10 (𝜑 → (Vtx‘𝐺) = 𝑉)
98pweqd 4163 . . . . . . . . 9 (𝜑 → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
103, 9eleqtrrd 2704 . . . . . . . 8 (𝜑𝐸 ∈ 𝒫 (Vtx‘𝐺))
11 1hevtxdg1.l . . . . . . . 8 (𝜑 → 2 ≤ (#‘𝐸))
12 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝐸 → (#‘𝑥) = (#‘𝐸))
1312breq2d 4665 . . . . . . . . 9 (𝑥 = 𝐸 → (2 ≤ (#‘𝑥) ↔ 2 ≤ (#‘𝐸)))
1413elrab 3363 . . . . . . . 8 (𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)} ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 2 ≤ (#‘𝐸)))
1510, 11, 14sylanbrc 698 . . . . . . 7 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
167, 15fsnd 6179 . . . . . 6 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
1716adantr 481 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
181adantr 481 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
19 simpr 477 . . . . . 6 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → dom (iEdg‘𝐺) = {𝐴})
2018, 19feq12d 6033 . . . . 5 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)}))
2117, 20mpbird 247 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)})
22 1hevtxdg0.d . . . . . 6 (𝜑𝐷𝑉)
2322, 8eleqtrrd 2704 . . . . 5 (𝜑𝐷 ∈ (Vtx‘𝐺))
2423adantr 481 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → 𝐷 ∈ (Vtx‘𝐺))
25 eqid 2622 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
26 eqid 2622 . . . . 5 (iEdg‘𝐺) = (iEdg‘𝐺)
27 eqid 2622 . . . . 5 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
28 eqid 2622 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
2925, 26, 27, 28vtxdlfgrval 26381 . . . 4 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (#‘𝑥)} ∧ 𝐷 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝐷) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
3021, 24, 29syl2anc 693 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
31 rabeq 3192 . . . . 5 (dom (iEdg‘𝐺) = {𝐴} → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3231adantl 482 . . . 4 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)})
3332fveq2d 6195 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (#‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}))
34 fveq2 6191 . . . . . . . . 9 (𝑥 = 𝐴 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝐴))
3534eleq2d 2687 . . . . . . . 8 (𝑥 = 𝐴 → (𝐷 ∈ ((iEdg‘𝐺)‘𝑥) ↔ 𝐷 ∈ ((iEdg‘𝐺)‘𝐴)))
3635rabsnif 4258 . . . . . . 7 {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅)
37 1hevtxdg1.n . . . . . . . . 9 (𝜑𝐷𝐸)
381fveq1d 6193 . . . . . . . . . 10 (𝜑 → ((iEdg‘𝐺)‘𝐴) = ({⟨𝐴, 𝐸⟩}‘𝐴))
39 fvsng 6447 . . . . . . . . . . 11 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
407, 3, 39syl2anc 693 . . . . . . . . . 10 (𝜑 → ({⟨𝐴, 𝐸⟩}‘𝐴) = 𝐸)
4138, 40eqtrd 2656 . . . . . . . . 9 (𝜑 → ((iEdg‘𝐺)‘𝐴) = 𝐸)
4237, 41eleqtrrd 2704 . . . . . . . 8 (𝜑𝐷 ∈ ((iEdg‘𝐺)‘𝐴))
4342iftrued 4094 . . . . . . 7 (𝜑 → if(𝐷 ∈ ((iEdg‘𝐺)‘𝐴), {𝐴}, ∅) = {𝐴})
4436, 43syl5eq 2668 . . . . . 6 (𝜑 → {𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)} = {𝐴})
4544fveq2d 6195 . . . . 5 (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = (#‘{𝐴}))
46 hashsng 13159 . . . . . 6 (𝐴𝑋 → (#‘{𝐴}) = 1)
477, 46syl 17 . . . . 5 (𝜑 → (#‘{𝐴}) = 1)
4845, 47eqtrd 2656 . . . 4 (𝜑 → (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
4948adantr 481 . . 3 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → (#‘{𝑥 ∈ {𝐴} ∣ 𝐷 ∈ ((iEdg‘𝐺)‘𝑥)}) = 1)
5030, 33, 493eqtrd 2660 . 2 ((𝜑 ∧ dom (iEdg‘𝐺) = {𝐴}) → ((VtxDeg‘𝐺)‘𝐷) = 1)
516, 50mpdan 702 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐷) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  cop 4183   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  1c1 9937  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-vtxdg 26362
This theorem is referenced by:  1hegrvtxdg1  26403  p1evtxdp1  26410
  Copyright terms: Public domain W3C validator