![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oppccomf | Structured version Visualization version GIF version |
Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 16397. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
2oppccomf | ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | eqid 2622 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16378 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝑂) |
4 | eqid 2622 | . . . . . . . 8 ⊢ (comp‘𝑂) = (comp‘𝑂) | |
5 | eqid 2622 | . . . . . . . 8 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
6 | simpr1 1067 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
7 | simpr2 1068 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
8 | simpr3 1069 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶)) | |
9 | 3, 4, 5, 6, 7, 8 | oppcco 16377 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔)) |
10 | eqid 2622 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
11 | 2, 10, 1, 8, 7, 6 | oppcco 16377 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
12 | 9, 11 | eqtr2d 2657 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
13 | 12 | ralrimivw 2967 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
14 | 13 | ralrimivw 2967 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
15 | 14 | ralrimivvva 2972 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
16 | eqid 2622 | . . . 4 ⊢ (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂)) | |
17 | eqid 2622 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
18 | eqidd 2623 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘𝐶)) | |
19 | 1, 2 | 2oppcbas 16383 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(oppCat‘𝑂)) |
20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂))) |
21 | 1 | 2oppchomf 16384 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
23 | 10, 16, 17, 18, 20, 22 | comfeq 16366 | . . 3 ⊢ (⊤ → ((compf‘𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓))) |
24 | 15, 23 | mpbird 247 | . 2 ⊢ (⊤ → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
25 | 24 | trud 1493 | 1 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ∧ w3a 1037 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ∀wral 2912 〈cop 4183 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Hom chom 15952 compcco 15953 Homf chomf 16327 compfccomf 16328 oppCatcoppc 16371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-hom 15966 df-cco 15967 df-homf 16331 df-comf 16332 df-oppc 16372 |
This theorem is referenced by: oppcepi 16399 oppchofcl 16900 oppcyon 16909 oyoncl 16910 |
Copyright terms: Public domain | W3C validator |