MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oppccomf Structured version   Visualization version   Unicode version

Theorem 2oppccomf 16385
Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 16397. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1  |-  O  =  (oppCat `  C )
Assertion
Ref Expression
2oppccomf  |-  (compf `  C
)  =  (compf `  (oppCat `  O ) )

Proof of Theorem 2oppccomf
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . . . . . 9  |-  O  =  (oppCat `  C )
2 eqid 2622 . . . . . . . . 9  |-  ( Base `  C )  =  (
Base `  C )
31, 2oppcbas 16378 . . . . . . . 8  |-  ( Base `  C )  =  (
Base `  O )
4 eqid 2622 . . . . . . . 8  |-  (comp `  O )  =  (comp `  O )
5 eqid 2622 . . . . . . . 8  |-  (oppCat `  O )  =  (oppCat `  O )
6 simpr1 1067 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  x  e.  ( Base `  C )
)
7 simpr2 1068 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  y  e.  ( Base `  C )
)
8 simpr3 1069 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  z  e.  ( Base `  C )
)
93, 4, 5, 6, 7, 8oppcco 16377 . . . . . . 7  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  ( g
( <. x ,  y
>. (comp `  (oppCat `  O
) ) z ) f )  =  ( f ( <. z ,  y >. (comp `  O ) x ) g ) )
10 eqid 2622 . . . . . . . 8  |-  (comp `  C )  =  (comp `  C )
112, 10, 1, 8, 7, 6oppcco 16377 . . . . . . 7  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  ( f
( <. z ,  y
>. (comp `  O )
x ) g )  =  ( g (
<. x ,  y >.
(comp `  C )
z ) f ) )
129, 11eqtr2d 2657 . . . . . 6  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  ( g
( <. x ,  y
>. (comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  (oppCat `  O
) ) z ) f ) )
1312ralrimivw 2967 . . . . 5  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  A. g  e.  ( y ( Hom  `  C ) z ) ( g ( <.
x ,  y >.
(comp `  C )
z ) f )  =  ( g (
<. x ,  y >.
(comp `  (oppCat `  O
) ) z ) f ) )
1413ralrimivw 2967 . . . 4  |-  ( ( T.  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  z  e.  ( Base `  C ) ) )  ->  A. f  e.  ( x ( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  (oppCat `  O )
) z ) f ) )
1514ralrimivvva 2972 . . 3  |-  ( T. 
->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. z  e.  ( Base `  C ) A. f  e.  ( x ( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  (oppCat `  O )
) z ) f ) )
16 eqid 2622 . . . 4  |-  (comp `  (oppCat `  O ) )  =  (comp `  (oppCat `  O ) )
17 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
18 eqidd 2623 . . . 4  |-  ( T. 
->  ( Base `  C
)  =  ( Base `  C ) )
191, 22oppcbas 16383 . . . . 5  |-  ( Base `  C )  =  (
Base `  (oppCat `  O
) )
2019a1i 11 . . . 4  |-  ( T. 
->  ( Base `  C
)  =  ( Base `  (oppCat `  O )
) )
2112oppchomf 16384 . . . . 5  |-  ( Hom f  `  C )  =  ( Hom f  `  (oppCat `  O )
)
2221a1i 11 . . . 4  |-  ( T. 
->  ( Hom f  `  C )  =  ( Hom f  `  (oppCat `  O
) ) )
2310, 16, 17, 18, 20, 22comfeq 16366 . . 3  |-  ( T. 
->  ( (compf `  C )  =  (compf `  (oppCat `  O ) )  <->  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C ) A. z  e.  ( Base `  C
) A. f  e.  ( x ( Hom  `  C ) y ) A. g  e.  ( y ( Hom  `  C
) z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  (oppCat `  O )
) z ) f ) ) )
2415, 23mpbird 247 . 2  |-  ( T. 
->  (compf `  C )  =  (compf `  (oppCat `  O ) ) )
2524trud 1493 1  |-  (compf `  C
)  =  (compf `  (oppCat `  O ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   A.wral 2912   <.cop 4183   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Hom f chomf 16327  compfccomf 16328  oppCatcoppc 16371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-homf 16331  df-comf 16332  df-oppc 16372
This theorem is referenced by:  oppcepi  16399  oppchofcl  16900  oppcyon  16909  oyoncl  16910
  Copyright terms: Public domain W3C validator