MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   GIF version

Theorem 2pthon3v 26839
Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
Hypotheses
Ref Expression
2pthon3v.v 𝑉 = (Vtx‘𝐺)
2pthon3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthon3v (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 2pthon3v
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthon3v.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
2 edgval 25941 . . . . . . . . . 10 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2644 . . . . . . . . 9 𝐸 = ran (iEdg‘𝐺)
43eleq2i 2693 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ ran (iEdg‘𝐺))
5 2pthon3v.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
6 eqid 2622 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
75, 6uhgrf 25957 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
87ffnd 6046 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
9 fvelrnb 6243 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
108, 9syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
114, 10syl5bb 272 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
123eleq2i 2693 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ ran (iEdg‘𝐺))
13 fvelrnb 6243 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
148, 13syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1512, 14syl5bb 272 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1611, 15anbi12d 747 . . . . . 6 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1716adantr 481 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1817adantr 481 . . . 4 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
19 reeanv 3107 . . . 4 (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
2018, 19syl6bbr 278 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
21 df-s2 13593 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = (⟨“𝑖”⟩ ++ ⟨“𝑗”⟩)
2221ovexi 6679 . . . . . . 7 ⟨“𝑖𝑗”⟩ ∈ V
23 df-s3 13594 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2423ovexi 6679 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ ∈ V
2522, 24pm3.2i 471 . . . . . 6 (⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V)
26 eqid 2622 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
27 eqid 2622 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = ⟨“𝑖𝑗”⟩
28 simp-4r 807 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝑉𝐵𝑉𝐶𝑉))
29 3simpb 1059 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐵𝐶))
3029ad3antlr 767 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝐵𝐵𝐶))
31 eqimss2 3658 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
32 eqimss2 3658 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶} → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3331, 32anim12i 590 . . . . . . . . 9 ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
3433adantl 482 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
35 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑗))
3635eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵}))
3736anbi1d 741 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
38 eqtr2 2642 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})
39 3simpa 1058 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
40 3simpc 1060 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
41 preq12bg 4386 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝐵𝑉) ∧ (𝐵𝑉𝐶𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
4239, 40, 41syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
43 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐵 → (𝐴𝐵𝑖𝑗))
4443com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵 → (𝐴 = 𝐵𝑖𝑗))
45443ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵𝑖𝑗))
4645com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐵 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
4746adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐵𝐵 = 𝐶) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
48 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐶 → (𝐴𝐶𝑖𝑗))
4948com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐶 → (𝐴 = 𝐶𝑖𝑗))
50493ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐶𝑖𝑗))
5150com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐶 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5251adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐶𝐵 = 𝐵) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5347, 52jaoi 394 . . . . . . . . . . . . . . . . . . 19 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5442, 53syl6bi 243 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗)))
5554com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5655adantl 482 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5756imp 445 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗))
5857com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} = {𝐵, 𝐶} → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5938, 58syl 17 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
6037, 59syl6bi 243 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗)))
6160com23 86 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
62 2a1 28 . . . . . . . . . . 11 (𝑖𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
6361, 62pm2.61ine 2877 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6463adantr 481 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6564imp 445 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝑖𝑗)
66 simplr2 1104 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → 𝐴𝐶)
6766adantr 481 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝐴𝐶)
6826, 27, 28, 30, 34, 5, 6, 65, 672pthond 26838 . . . . . . 7 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩)
69 s2len 13634 . . . . . . 7 (#‘⟨“𝑖𝑗”⟩) = 2
7068, 69jctir 561 . . . . . 6 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘⟨“𝑖𝑗”⟩) = 2))
71 breq12 4658 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ↔ ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩))
72 fveq2 6191 . . . . . . . . . 10 (𝑓 = ⟨“𝑖𝑗”⟩ → (#‘𝑓) = (#‘⟨“𝑖𝑗”⟩))
7372eqeq1d 2624 . . . . . . . . 9 (𝑓 = ⟨“𝑖𝑗”⟩ → ((#‘𝑓) = 2 ↔ (#‘⟨“𝑖𝑗”⟩) = 2))
7473adantr 481 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((#‘𝑓) = 2 ↔ (#‘⟨“𝑖𝑗”⟩) = 2))
7571, 74anbi12d 747 . . . . . . 7 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2) ↔ (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘⟨“𝑖𝑗”⟩) = 2)))
7675spc2egv 3295 . . . . . 6 ((⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V) → ((⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘⟨“𝑖𝑗”⟩) = 2) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2)))
7725, 70, 76mpsyl 68 . . . . 5 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2))
7877ex 450 . . . 4 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2)))
7978rexlimdvva 3038 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2)))
8020, 79sylbid 230 . 2 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2)))
81803impia 1261 1 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (#‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179   class class class wbr 4653  dom cdm 5114  ran crn 5115   Fn wfn 5883  cfv 5888  (class class class)co 6650  2c2 11070  #chash 13117   ++ cconcat 13293  ⟨“cs1 13294  ⟨“cs2 13586  ⟨“cs3 13587  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951  SPathsOncspthson 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-spthson 26615
This theorem is referenced by:  2pthfrgr  27148
  Copyright terms: Public domain W3C validator